Cannabichromene is a cannabinoid CB2 receptor agonist. 2019

Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.

Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest antinociceptive and anti-inflammatory effects and potentiates some effects of Δ9 -tetrahydrocannabinol in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at cannabinoid CB1 and CB2 receptors. AtT20 cells stably expressing haemagglutinin-tagged human CB1 and CB2 receptors were used. Assays of cellular membrane potential and loss of cell surface receptors were performed. CBC activated CB2 but not CB1 receptors to produce hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 receptor antagonist AM630, and sensitive to Pertussis toxin. Application of CBC reduced activation of CB2 , but not CB1 , receptors by subsequent co-application of CP55,940, an efficacious CB1 and CB2 receptor agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitization of the CB2 receptor-induced hyperpolarization. CBC is a selective CB2 receptor agonist displaying higher efficacy than tetrahydrocannabinol in hyperpolarizing AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2 receptor-mediated modulation of inflammation.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D043885 Receptor, Cannabinoid, CB2 A subclass of cannabinoid receptor found primarily on immune cells where it may play a role modulating release of CYTOKINES. Cannabinoid Receptor CB2,CB2 Receptor,CB2, Cannabinoid Receptor,Receptor CB2, Cannabinoid,Receptor, CB2

Related Publications

Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
September 2002, Journal of veterinary science,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
August 2007, British journal of pharmacology,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
January 2013, Journal of Alzheimer's disease : JAD,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
September 2006, British journal of pharmacology,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
February 2015, ACS medicinal chemistry letters,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
January 2019, Frontiers in pharmacology,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
April 2021, Journal of pharmacological sciences,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
December 2005, European journal of pharmacology,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
November 2007, Behavioural pharmacology,
Michael Udoh, and Marina Santiago, and Steven Devenish, and Iain S McGregor, and Mark Connor
January 2011, Neuropharmacology,
Copied contents to your clipboard!