Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. 1988

B Himpens, and A P Somlyo
Pennsylvania Muscle Institute, University of Pennsylvania, School of Medicine, Philadelphia 19104-6083.

1. Fura2 was loaded by permeation and hydrolysis of the acetoxymethyl ester into smooth muscle cells of intact thin sheets of the longitudinal layer of the small intestine of the guinea-pig, to record Ca2+ transients during contraction. 2. Cytoplasmic Ca2+ ([Ca2+]i) was monitored by computing the ratio of the fluorescence signal excited at 340 and 380 nm wavelengths. The dye loading and the exposure to UV light required for the experiments had no significant effect on the contractile parameters observed. 3. Spontaneous, rhythmic increases in [Ca2+]i were often observed, preceding the onset of force. Removal of extracellular Ca2+ caused a very transient increase in [Ca2+]i accompanied by a phasic force transient; this was followed by a decline in [Ca2+]i and tension below control levels. Elevated Ca2+ from 1.2 to 15 mM also caused a fall in [Ca2+]i and a relaxation of basal tension. 4. Elevation of [K+]o increased [Ca2+]i. Graded concentrations of K+ caused graded changes in both fluorescence ratio and tension. 5. Carbachol evoked a transient increase in [Ca2+]i and contraction. Thereafter, in spite of the continued presence of the drug, both signals declined, presumably as the result of cholinergic desensitization. The initial phasic force response to carbachol was usually followed by an 'after-contraction', that was only occasionally accompanied by a similar (small) secondary rise in the fluorescence signal. 6. In depolarized smooth muscle, both in the presence and in the absence of extracellular Ca2+, carbachol induced a transient increase in [Ca2+]i, indicating that Ca2+ release from intracellular stores is a major mechanism of pharmacomechanical coupling. 7. In some preparations an applied stretch caused, after a few seconds, a rise in [Ca2+]i and force development.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

B Himpens, and A P Somlyo
December 1990, Pflugers Archiv : European journal of physiology,
B Himpens, and A P Somlyo
January 1968, The Journal of pharmacology and experimental therapeutics,
B Himpens, and A P Somlyo
January 1988, Annals of the New York Academy of Sciences,
B Himpens, and A P Somlyo
November 2019, Experimental physiology,
B Himpens, and A P Somlyo
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
B Himpens, and A P Somlyo
January 1991, Japanese journal of pharmacology,
B Himpens, and A P Somlyo
January 1982, The American journal of physiology,
Copied contents to your clipboard!