Discontinuous transcription in Leptomonas seymouri: presence of intact and interrupted mini-exon gene families. 1988

V Bellofatto, and R Cooper, and G A Cross
Rockefeller University, New York, NY 10021-6399.

Mature mRNAs of trypanosomatid protozoa result from the joining of at least two exons, which are initially transcribed as separate RNAs. In all trypanosomatids examined to date, the first exon (mini-exon) is encoded by approximately 200 tandemly reiterated genes. In characterizing the mini-exon genes of Leptomonas seymouri, we identified two predominant size classes of repetitive sequences that hybridized strongly to the L. seymouri mini-exon sequence. These two sequences are arranged as interspersed clusters. DNA sequence analysis of a clone representing the smaller size class demonstrated that these sequences have the capacity to encode a mini-exon donor (med)RNA corresponding to the 86 nt component seen in Northern blots of L. seymouri RNA. The larger size class comprises a family of related sequences, some of which contain DNA inserted into the mini-exon portion of the medRNA gene. The specific insert identified here (LINS 1) is exclusively associated with medRNA sequences, and is present in approximately 20% of the larger size class of L. seymouri medRNA genes. Disregarding the insertion, the sequences of the smaller bona fide mini-exon genes and the gene copy containing the insert were almost identical. The insert sequence is transcribed in the same direction as medRNA to yield at least four small non-polyadenylated RNAs, which appeared not to be linked to medRNA sequences.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

V Bellofatto, and R Cooper, and G A Cross
April 1995, Molecular and biochemical parasitology,
V Bellofatto, and R Cooper, and G A Cross
May 1984, Molecular and biochemical parasitology,
V Bellofatto, and R Cooper, and G A Cross
May 2001, International journal for parasitology,
V Bellofatto, and R Cooper, and G A Cross
January 2004, Molekuliarnaia biologiia,
V Bellofatto, and R Cooper, and G A Cross
August 2012, Journal of clinical microbiology,
V Bellofatto, and R Cooper, and G A Cross
April 1988, Nucleic acids research,
V Bellofatto, and R Cooper, and G A Cross
October 1993, The Journal of parasitology,
V Bellofatto, and R Cooper, and G A Cross
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
V Bellofatto, and R Cooper, and G A Cross
December 1997, Molecular and biochemical parasitology,
V Bellofatto, and R Cooper, and G A Cross
August 1999, Parasitology research,
Copied contents to your clipboard!