Drosophila has a single copy of the gene encoding a highly conserved histone H2A variant of the H2A.F/Z type. 1988

A van Daal, and E M White, and M A Gorovsky, and S C Elgin
Department of Biology, Washington University, St Louis, MO 63130.

The Tetrahymena histone H2A variant designated hv1 is localized exclusively in the transcriptionally active macronucleus and is absent from the quiescent micronucleus (1). A cDNA clone of the hv1 gene (2) was used to screen a Drosophila cDNA library. A cross-hybridizing clone was recovered and shown by sequence analysis to code for a protein homologous to hv1 as well as to the chicken H2A variant, H2A.F (3), the sea urchin H2A variant, H2A.F/Z (4) and the mammalian H2A variant H2A.Z (5). Southern analysis of Drosophila genomic DNA indicates that the H2AvD (H2A variant Drosophila) gene is present in one copy. In situ hybridization places the locus at 97CD on chromosome 3, while the S-phase regulated histone genes are on chromosome 2 (6). Thus the Drosophila H2A variant should be accessible to genetic analysis, which will enable its function to be determined.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A van Daal, and E M White, and M A Gorovsky, and S C Elgin
December 1996, Trends in biochemical sciences,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
June 1987, Nucleic acids research,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
May 1983, Proceedings of the National Academy of Sciences of the United States of America,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
December 2001, Development genes and evolution,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
August 2009, Biology of reproduction,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
April 1998, Biochemical and biophysical research communications,
A van Daal, and E M White, and M A Gorovsky, and S C Elgin
February 1995, Gene,
Copied contents to your clipboard!