Beta-galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli. 1988

C D Georgiou, and T J Dueweke, and R B Gennis
Department of Biochemistry, University of Illinois, Urbana-Champaign 61801.

The cytochrome d terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water along with the concomitant generation of a proton-motive force across the membrane. Previous studies have established that the oxidase is composed of one copy of each of two subunits (I and II), and contains four heme prosthetic groups. The hydropathy profiles of the amino acid sequences suggest that each subunit has multiple transmembrane-spanning helical segments. The goal of the current work is to obtain experimental information about which portions of the two polypeptide chains are facing the cytoplasm. This is part of an effort to determine the topological folding of the two subunits across the membrane. A number of random gene fusions were generated in vitro which encode hybrid proteins in which the amino-terminal portion is provided by one of the two subunits of the oxidase, and the carboxyl-terminal portion is beta-galactosidase. Studies from other systems have indicated that the only hybrid proteins which will manifest high beta-galactosidase specific activity and be membrane-bound will be those where the fusion junction is in a region of the cytochrome polypeptides facing the cytoplasm. Fusions were obtained in eight positions within subunit I and 11 positions within subunit II. These identified four cytoplasmic-facing regions within subunit II, consistent with its hydropathy profile showing eight transmembrane helices. The data with subunit I are less conclusive.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

C D Georgiou, and T J Dueweke, and R B Gennis
January 1983, Methods in enzymology,
C D Georgiou, and T J Dueweke, and R B Gennis
November 2021, Nature communications,
C D Georgiou, and T J Dueweke, and R B Gennis
June 1984, The Journal of biological chemistry,
C D Georgiou, and T J Dueweke, and R B Gennis
January 1986, Methods in enzymology,
C D Georgiou, and T J Dueweke, and R B Gennis
October 1991, Molecular microbiology,
C D Georgiou, and T J Dueweke, and R B Gennis
August 1990, The Journal of biological chemistry,
C D Georgiou, and T J Dueweke, and R B Gennis
February 1993, Biochimica et biophysica acta,
C D Georgiou, and T J Dueweke, and R B Gennis
November 1993, FEBS letters,
C D Georgiou, and T J Dueweke, and R B Gennis
August 1968, Annales de l'Institut Pasteur,
Copied contents to your clipboard!