Characterisation of DNA methylation changes in EBF3 and TBC1D16 associated with tumour progression and metastasis in multiple cancer types. 2019

Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. euan.rodger@otago.ac.nz.

Characteristic DNA methylation differences have been identified between primary and metastatic melanomas at EBF3 and/or TBC1D16 gene loci. To further evaluate whether these epigenetic changes may act more generally as drivers of tumour onset and metastasis, we have investigated DNA methylation changes involving EBF3 and TBC1D16 in additional publicly available data of multiple different tumour types. Promoter hypermethylation and gene body hypomethylation of EBF3 were observed in a number of metastatic tumour types, when compared to normal or primary tumour tissues, as well as in tumour vs normal tissues and in a colorectal primary/metastasis pair, although not all tumour samples or primary/metastasis cancer pairs exhibited altered patterns of EBF3 methylation. In addition, hypomethylation of TBC1D16 was observed in multiple tumours, including a breast cancer primary/metastasis pair, and to a lesser degree in melanoma, although again not all tumours or cancer primary/metastasis pairs exhibited altered patterns of methylation. These findings suggest characteristic DNA methylation changes in EBF3 and TBC1D16 are relatively common tumour-associated epigenetic events in multiple tumour types, which is consistent with a potential role as more general drivers of tumour progression.

UI MeSH Term Description Entries
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D018450 Disease Progression The worsening and general progression of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis. Clinical Course,Clinical Progression,Disease Exacerbation,Exacerbation, Disease,Progression, Clinical,Progression, Disease
D019175 DNA Methylation Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor. DNA Methylations,Methylation, DNA,Methylations, DNA

Related Publications

Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
January 1988, British journal of cancer,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
July 2015, JAMA oncology,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
January 2015, Cell cycle (Georgetown, Tex.),
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
February 2022, Progress in neurobiology,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
November 2010, Gan to kagaku ryoho. Cancer & chemotherapy,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
May 2024, BMC medical genomics,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
April 2011, Gut,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
January 2024, The Journal of international medical research,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
December 2011, BMC medical genomics,
Euan J Rodger, and Aniruddha Chatterjee, and Peter A Stockwell, and Michael R Eccles
July 2015, JAMA oncology,
Copied contents to your clipboard!