Rabbit reticulocyte lipoxygenase catalyzes specific 12(S) and 15(S) oxygenation of arachidonoyl-phosphatidylcholine. 1988

J J Murray, and A R Brash
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232.

The rabbit reticulocyte lipoxygenase is known to display an unusual facility for oxygenation of esterified polyunsaturated fatty acids, yet the precise structures of the products are not known. With free arachidonate as substrate the enzyme is known to catalyze 15S and 12S oxygenations, and demonstration of a facility for catalysis of these reactions on phospholipids would extend the potential scope of lipoxygenase reactions in cells. We elected to study in detail the reaction of the enzyme with a natural phospholipid, palmitoyl/arachidonoyl-phosphatidylcholine. We determined the nature of the products by initial isolation by RP-HPLC, followed by transesterification and identification of the oxygenated products by HPLC, uv, GC-MS, and steric analysis of hydroxyl configuration by HPLC. The major product was identified as a phosphatidylcholine in which the arachidonate component was converted to the 15(S)-hydroperoxy-eicosatetraenoate. A second oxygenated phospholipid was produced in smaller quantities (2-5% of the latter product) and identified as the 12(S)-oxygenated analog. These products were also identified after reaction of the reticulocyte lipoxygenase with human red cell membranes which were radiolabeled by preincubation with [3H]arachidonic acid. The finding of 12S oxygenation represents the first evidence that a lipoxygenase can control a reaction centered on the 10-carbon of an arachidonoyl phospholipid. This is an important precedent, because hydrogen abstraction from carbon-10 is a critical step in the lipoxygenase-catalyzed synthesis of 8- and 12-hydroperoxy-eicosatetraenoates (HPETEs) and for the conversion of 5- and 15-HPETEs to leukotrienes.

UI MeSH Term Description Entries
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic

Related Publications

J J Murray, and A R Brash
July 1985, Biochemical and biophysical research communications,
J J Murray, and A R Brash
January 1999, Advances in experimental medicine and biology,
J J Murray, and A R Brash
February 2008, Journal of agricultural and food chemistry,
J J Murray, and A R Brash
May 2014, Journal of medicinal chemistry,
J J Murray, and A R Brash
November 1998, Protein expression and purification,
J J Murray, and A R Brash
March 1994, The Biochemical journal,
J J Murray, and A R Brash
January 1981, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!