Import of rat liver mitochondrial transhydrogenase. 1988

L N Wu, and I M Lubin, and R R Fisher
Department of Chemistry, University of South Carolina, Columbia 29208.

The biosynthesis of pyridine dinucleotide transhydrogenase has been studied in isolated rat hepatocytes and in a rabbit reticulocyte-lysate translation system supplemented with either intact isolated rat liver mitochondria or the soluble matrix fraction from isolated mitochondria. In intact hepatocytes, the transhydrogenase precursor was short-lived in the cytosol and was efficiently imported into the membranous fraction. When the cell-free translation mixture was incubated with intact mitochondria, the transhydrogenase precursor was processed to the mature form, to an extent that depended on the amount of added mitochondria. Incubation of the translation mixture with the soluble mitochondria matrix fraction converted the precursor to a mature-sized protein with 75% efficiency, this being blocked by various proteinase inhibitors such as EDTA, 1,10-phenanthroline and leupeptin.

UI MeSH Term Description Entries
D007976 Leupeptins A group of acylated oligopeptides produced by Actinomycetes that function as protease inhibitors. They have been known to inhibit to varying degrees trypsin, plasmin, KALLIKREINS, papain and the cathepsins.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009250 NADP Transhydrogenases Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes. NADP Transhydrogenase,Pyridine Nucleotide Transhydrogenase,Energy-Linked Transhydrogenase,NAD Transhydrogenase,NADPH NAD Transhydrogenase,NADPH Transferase,Nicotinamide Nucleotide Transhydrogenase,Energy Linked Transhydrogenase,NAD Transhydrogenase, NADPH,Nucleotide Transhydrogenase, Nicotinamide,Nucleotide Transhydrogenase, Pyridine,Transferase, NADPH,Transhydrogenase, Energy-Linked,Transhydrogenase, NAD,Transhydrogenase, NADP,Transhydrogenase, NADPH NAD,Transhydrogenase, Nicotinamide Nucleotide,Transhydrogenase, Pyridine Nucleotide,Transhydrogenases, NADP
D010618 Phenanthrolines Phenanthroline
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L N Wu, and I M Lubin, and R R Fisher
September 1987, Archives of biochemistry and biophysics,
L N Wu, and I M Lubin, and R R Fisher
November 1982, Biochemical pharmacology,
L N Wu, and I M Lubin, and R R Fisher
December 1994, DNA and cell biology,
L N Wu, and I M Lubin, and R R Fisher
November 1984, The Journal of biological chemistry,
L N Wu, and I M Lubin, and R R Fisher
July 1997, The Journal of biological chemistry,
L N Wu, and I M Lubin, and R R Fisher
September 1981, Biochemical and biophysical research communications,
L N Wu, and I M Lubin, and R R Fisher
February 1960, Biochimica et biophysica acta,
L N Wu, and I M Lubin, and R R Fisher
July 1983, Biochimica et biophysica acta,
L N Wu, and I M Lubin, and R R Fisher
September 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!