Techniques to Study Antigen-Specific B Cell Responses. 2019

Jim Boonyaratanakornkit, and Justin J Taylor
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Antibodies against foreign antigens are a critical component of the overall immune response and can facilitate pathogen clearance during a primary infection and also protect against subsequent infections. Dysregulation of the antibody response can lead to an autoimmune disease, malignancy, or enhanced infection. Since the experimental delineation of a distinct B cell lineage in 1965, various methods have been developed to understand antigen-specific B cell responses in the context of autoimmune diseases, primary immunodeficiencies, infection, and vaccination. In this review, we summarize the established techniques and discuss new and emerging technologies for probing the B cell response in vitro and in vivo by taking advantage of the specificity of B cell receptor (BCR)-associated and secreted antibodies. These include ELISPOT, flow cytometry, mass cytometry, and fluorescence microscopy to identify and/or isolate primary antigen-specific B cells. We also present our approach to identify rare antigen-specific B cells using magnetic enrichment followed by flow cytometry. Once these cells are isolated, in vitro proliferation assays and adoptive transfer experiments in mice can be used to further characterize antigen-specific B cell activation, function, and fate. Transgenic mouse models of B cells targeting model antigens and of B cell signaling have also significantly advanced our understanding of antigen-specific B cell responses in vivo.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D058501 Enzyme-Linked Immunospot Assay A method of detection of the number of cells in a sample secreting a specific molecule. With this method, a population of cells are plated over top of the immunosorbent substrate that captures the secreted molecules. ELISPOT,Assay, Enzyme-Linked Immunospot,Assays, Enzyme-Linked Immunospot,Enzyme Linked Immunospot Assay,Enzyme-Linked Immunospot Assays,Immunospot Assay, Enzyme-Linked,Immunospot Assays, Enzyme-Linked
D018189 Immunomagnetic Separation A cell-separation technique where magnetizable microspheres or beads are first coated with monoclonal antibody, allowed to search and bind to target cells, and are then selectively removed when passed through a magnetic field. Among other applications, the technique is commonly used to remove tumor cells from the marrow (BONE MARROW PURGING) of patients who are to undergo autologous bone marrow transplantation. Immunomagnetic Bead Technique,Immunomagnetic Purging,Immunomagnetic Cell Separation,Bead Technique, Immunomagnetic,Bead Techniques, Immunomagnetic,Cell Separation, Immunomagnetic,Cell Separations, Immunomagnetic,Immunomagnetic Bead Techniques,Immunomagnetic Cell Separations,Immunomagnetic Purgings,Immunomagnetic Separations,Purging, Immunomagnetic,Purgings, Immunomagnetic,Separation, Immunomagnetic,Separation, Immunomagnetic Cell,Separations, Immunomagnetic,Separations, Immunomagnetic Cell

Related Publications

Jim Boonyaratanakornkit, and Justin J Taylor
July 2021, Vaccines,
Jim Boonyaratanakornkit, and Justin J Taylor
January 1985, Immunogenetics,
Jim Boonyaratanakornkit, and Justin J Taylor
January 2000, Immunologic research,
Jim Boonyaratanakornkit, and Justin J Taylor
September 2023, Journal of immunology (Baltimore, Md. : 1950),
Jim Boonyaratanakornkit, and Justin J Taylor
September 2010, Immunological reviews,
Jim Boonyaratanakornkit, and Justin J Taylor
January 1986, Symposium on Fundamental Cancer Research,
Jim Boonyaratanakornkit, and Justin J Taylor
April 2013, Journal of immunology (Baltimore, Md. : 1950),
Jim Boonyaratanakornkit, and Justin J Taylor
January 2008, Journal of virology,
Jim Boonyaratanakornkit, and Justin J Taylor
September 2009, Infection and immunity,
Jim Boonyaratanakornkit, and Justin J Taylor
August 1982, The Journal of experimental medicine,
Copied contents to your clipboard!