Extracellular space of frog skeletal muscle in vivo and in vitro: relation to proton magnetic resonance relaxation times. 1979

M C Neville, and S White

1. The Na and Cl distribution spaces of freshly isolated frog muscles are 16.7 and 12.6%, respectively. These values increase to 25.6 and 23.3%, respectively, on incubation. 2. The extracellular components of both Na and Cl efflux curves are significantly smaller in freshly isolated muscles (approximately 12%) than in incubated muscles (approximately 18%). The fast exchanging A component of the extracellular space is increased more by incubation than the more slowly exchanging B component. 3. The proton magnetic resonance (p.m.r.) transverse relaxation curve for the water of freshly isolated frog muscles did not show the long, slowly relaxing tail present in curves from muscles incubated in Ringer solution. 4. When muscles were incubated in hypertonic solutions the p.m.r. transverse relaxation curves could be resolved into three components whose sizes were consistent with the components present in the sodium and chloride efflux curves. The non-exponentiality of the p.m.r. transverse relaxation curve therfore appears to arise from water in both the A and B extracellular compartments of muscle. 5. Efflux analysis indicated that the cellular Na content of both freshly isolated and incubated frog muscle is similar to that predicted by others (Lev, 1964; Armstrong & Lee, 1971; Lee & Armstrong, 1974) from measurements of intracellular Na ion activity using Na-sensitive micro-electrodes. The remainder of the tissue Na was found in the more rapidly exchanging extracellular compartments. The results of these experiments are inconsistent with the presence of a substantial fraction of bound Na in frog muscle. 6. These experiments show that muscle extracellular space is smaller in vivo than in vitro. Efflux analysis is suggested as the most accurate method of assessing extra-cellular components.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005950 Glucose Solution, Hypertonic Solution that is usually 10 percent glucose but may be higher. An isotonic solution of glucose is 5 percent. Hypertonic Glucose Solution,Hypertonic Solution, Glucose,Glucose Solutions, Hypertonic,Hypertonic Solutions, Glucose,Glucose Hypertonic Solution,Glucose Hypertonic Solutions,Hypertonic Glucose Solutions,Solution, Glucose Hypertonic,Solution, Hypertonic Glucose,Solutions, Glucose Hypertonic,Solutions, Hypertonic Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M C Neville, and S White
December 1974, Biophysical journal,
M C Neville, and S White
January 1990, Advances in neurology,
M C Neville, and S White
July 1991, The Journal of investigative dermatology,
M C Neville, and S White
August 1987, Journal of the American College of Cardiology,
M C Neville, and S White
January 1990, Advances in neurology,
M C Neville, and S White
January 1984, Physiological chemistry and physics and medical NMR,
Copied contents to your clipboard!