FtsZ inhibitors as a new genera of antibacterial agents. 2019

Swayansiddha Tripathy, and Susanta Kumar Sahu
University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India. Electronic address: swayansiddha@gmail.com.

The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.

UI MeSH Term Description Entries
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Swayansiddha Tripathy, and Susanta Kumar Sahu
July 2012, ChemMedChem,
Swayansiddha Tripathy, and Susanta Kumar Sahu
April 2013, Bioorganic & medicinal chemistry letters,
Swayansiddha Tripathy, and Susanta Kumar Sahu
December 2004, Current drug targets. Infectious disorders,
Swayansiddha Tripathy, and Susanta Kumar Sahu
January 2022, RSC medicinal chemistry,
Swayansiddha Tripathy, and Susanta Kumar Sahu
April 2017, Bioorganic & medicinal chemistry letters,
Swayansiddha Tripathy, and Susanta Kumar Sahu
August 2017, Bioorganic & medicinal chemistry letters,
Swayansiddha Tripathy, and Susanta Kumar Sahu
December 2012, Bioorganic & medicinal chemistry,
Swayansiddha Tripathy, and Susanta Kumar Sahu
January 2005, Current topics in medicinal chemistry,
Swayansiddha Tripathy, and Susanta Kumar Sahu
February 2020, European journal of medicinal chemistry,
Swayansiddha Tripathy, and Susanta Kumar Sahu
March 2006, Biochemical pharmacology,
Copied contents to your clipboard!