Differential Expression of Prostaglandin E2 Receptors in Porcine Kidney Transplants. 2019

Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
Department of Surgery Medical College of Georgia at Augusta University, Augusta, Georgia. Electronic address: aharner@augusta.edu.

BACKGROUND Acute rejection of a kidney allograft results from adaptive immune responses and marked inflammation. The eicosanoid prostaglandin E2 (PGE2) modulates the inflammatory response, is generated by cyclooxygenase 2 (COX-2), and binds to 1 of the 4 G protein-coupled E prostanoid cell surface receptors (EP1-4). Receptor activation results in in proinflammatory (EP1 and EP3) or anti-inflammatory (EP2 and EP4) responses. We theorized that expression of the components of the COX-PGE2-EP signaling pathway correlates with acute rejection in a porcine model of allogeneic renal transplantation. METHODS COX-2 enzyme and EP receptor protein expression were quantitated with western blotting and immunohistochemistry from allotransplants (n = 18) and autotransplants (n = 5). Linear regression analysis was used to correlate EP receptor expression with the Banff category of rejection. RESULTS Pigs with advanced rejection demonstrated significant increases in serum PGE2 metabolites, while pigs with less rejection demonstrated higher tissue concentrations of PGE2 metabolites. A significant negative correlation between COX-2 expression and Banff category of rejection (R = -0.877) was shown. Rejection decreased expression of EP2 and EP4. For both receptors, there was a significant negative correlation with the extent of rejection (R = -0.760 and R = -0.891 for EP2 and EP4, respectively). Rejection had no effect on the proinflammatory receptors EP1 and EP3. CONCLUSIONS Downregulation of COX-2 and the anti-inflammatory EP2 and EP4 receptors is associated with acute rejection in unmatched pig kidney transplants, suggesting that the COX-2-PGE2-EP pathway may modulate inflammation in this model. Enhancing EP2 and/or EP4 activity may offer novel therapeutic approaches to controlling the inflammation of acute allograft rejection.

UI MeSH Term Description Entries
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D016030 Kidney Transplantation The transference of a kidney from one human or animal to another. Grafting, Kidney,Renal Transplantation,Transplantation, Kidney,Transplantation, Renal,Kidney Grafting,Kidney Transplantations,Renal Transplantations,Transplantations, Kidney,Transplantations, Renal
D051546 Cyclooxygenase 2 An inducibly-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes and INFLAMMATION. It is the target of COX2 INHIBITORS. COX-2 Prostaglandin Synthase,Cyclo-Oxygenase II,Cyclooxygenase-2,PGHS-2,PTGS2,Prostaglandin H Synthase-2,COX 2 Prostaglandin Synthase,Cyclo Oxygenase II,Prostaglandin H Synthase 2,Prostaglandin Synthase, COX-2,Synthase, COX-2 Prostaglandin

Related Publications

Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
August 2014, American journal of physiology. Renal physiology,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
April 2008, The Journal of biological chemistry,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
September 2005, Journal of neuroscience research,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
March 2018, Clinical and experimental otorhinolaryngology,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
October 1993, Prostaglandins, leukotrienes, and essential fatty acids,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
August 1987, Kidney international,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
October 2004, European journal of pharmacology,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
March 2007, Pharmacogenetics and genomics,
Andrew Harner, and Youli Wang, and Xuexiu Fang, and Todd D Merchen, and Philip B Cox, and Sam Ho, and Daniel Kleven, and Thomas Thompson, and N Stanley Nahman
December 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!