Polycystic Kidney Disease and Renal Fibrosis. 2019

Cheng Xue, and Chang-Lin Mei
Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China.

Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin-integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007690 Polycystic Kidney Diseases Hereditary diseases that are characterized by the progressive expansion of a large number of tightly packed CYSTS within the KIDNEYS. They include diseases with autosomal dominant and autosomal recessive inheritance. Kidney, Polycystic,Polycystic Kidney,Polycystic Kidney Disease,Polycystic Kidneys,Polycystic Renal Disease,Disease, Polycystic Kidney,Disease, Polycystic Renal,Diseases, Polycystic Kidney,Diseases, Polycystic Renal,Kidney Disease, Polycystic,Kidney Diseases, Polycystic,Kidneys, Polycystic,Polycystic Renal Diseases,Renal Disease, Polycystic,Renal Diseases, Polycystic
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005355 Fibrosis Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury. Cirrhosis,Fibroses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016891 Polycystic Kidney, Autosomal Dominant Kidney disorders with autosomal dominant inheritance and characterized by multiple CYSTS in both KIDNEYS with progressive deterioration of renal function. Autosomal Dominant Polycystic Kidney,Kidney, Polycystic, Autosomal Dominant,ADPKD,Adult Polycystic Kidney Disease,Adult Polycystic Kidney Disease Type 1,Adult Polycystic Kidney Disease Type 2,Polycystic Kidney Disease 2,Polycystic Kidney Disease, Adult,Polycystic Kidney Disease, Adult Type 2,Polycystic Kidney Disease, Adult, Type II,Polycystic Kidney Disease, Autosomal Dominant,Polycystic Kidney Disease, Type 2,Polycystic Kidney, Type 1 Autosomal Dominant Disease,Polycystic Kidney, Type 2 Autosomal Dominant Disease

Related Publications

Cheng Xue, and Chang-Lin Mei
April 1982, Rinsho hoshasen. Clinical radiography,
Cheng Xue, and Chang-Lin Mei
April 2014, Kidney international,
Cheng Xue, and Chang-Lin Mei
January 2017, Results and problems in cell differentiation,
Cheng Xue, and Chang-Lin Mei
December 2007, Nephrology (Carlton, Vic.),
Cheng Xue, and Chang-Lin Mei
August 1978, Archives of internal medicine,
Cheng Xue, and Chang-Lin Mei
January 1986, American journal of nephrology,
Cheng Xue, and Chang-Lin Mei
January 1995, Contributions to nephrology,
Copied contents to your clipboard!