Could Dampening Expression of the Neisseria gonorrhoeae mtrCDE-Encoded Efflux Pump Be a Strategy To Preserve Currently or Resurrect Formerly Used Antibiotics To Treat Gonorrhea? 2019

Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
Department of Microbiology and Immunology and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA.

Neisseria gonorrhoeae has developed resistance to every antibiotic introduced for treatment of gonorrhea since 1938, and concern now exists that gonorrheal infections may become refractory to all available antibiotics approved for therapy. The current recommended dual antibiotic treatment regimen of ceftriaxone (CRO) and azithromycin (AZM) is threatened with the emergence of gonococcal strains displaying resistance to one or both of these antibiotics. Non-beta-lactamase resistance to penicillin and third-generation cephalosporins, as well as low-level AZM resistance expressed by gonococci, requires overexpression of the mtrCDE-encoded efflux pump, which in wild-type (WT) strains is subject to transcriptional repression by MtrR. Since earlier studies showed that loss of MtrCDE renders gonococci hypersusceptible to beta-lactams and macrolides, we hypothesized that transcriptional dampening of mtrCDE would render an otherwise resistant strain susceptible to these antibiotics as assessed by antibiotic susceptibility testing and during experimental infection. In order to test this hypothesis, we ectopically expressed a WT copy of the mtrR gene, which encodes the repressor of the mtrCDE efflux pump operon, in N. gonorrhoeae strain H041, the first reported gonococcal strain to cause a third-generation-cephalosporin-resistant infection. We now report that MtrR production can repress the expression of mtrCDE, increase antimicrobial susceptibility in vitro, and enhance beta-lactam efficacy in eliminating gonococci as assessed in a female mouse model of lower genital tract infection. We propose that strategies that target the MtrCDE efflux pump should be considered to counteract the increasing problem of antibiotic-resistant gonococci.IMPORTANCE The emergence of gonococcal strains resistant to past or currently used antibiotics is a global public health concern, given the estimated 78 million infections that occur annually. The dearth of new antibiotics to treat gonorrhea demands that alternative curative strategies be considered to counteract antibiotic resistance expressed by gonococci. Herein, we show that decreased expression of a drug efflux pump that participates in gonococcal resistance to antibiotics can increase gonococcal susceptibility to beta-lactams and macrolides under laboratory conditions, as well as improve antibiotic-mediated clearance of gonococci from the genital tract of experimentally infected female mice.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D005260 Female Females
D006069 Gonorrhea Acute infectious disease characterized by primary invasion of the urogenital tract. The etiologic agent, NEISSERIA GONORRHOEAE, was isolated by Neisser in 1879. Neisseria gonorrhoeae Infection
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
August 1999, Molecular microbiology,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
January 2022, Antimicrobial agents and chemotherapy,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
August 2022, Microbiology (Reading, England),
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
January 2018, Frontiers in microbiology,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
January 2015, Antimicrobial agents and chemotherapy,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
January 1995, Pathology,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
November 2004, Molecular microbiology,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
June 2015, Antibiotics (Basel, Switzerland),
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
December 2003, Journal of bacteriology,
Shaochun Chen, and Kristie L Connolly, and Corinne Rouquette-Loughlin, and Alexander D'Andrea, and Ann E Jerse, and William M Shafer
January 2015, Sexually transmitted diseases,
Copied contents to your clipboard!