Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. 1988

W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
Laboratory of Molecular and Integrative Neuroscience, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

Dopaminergic control of striatal neurons is retained in rats sustaining lesions of the nigrostriatal bundle (NSB) as long as 10% of the projection remains, suggesting that enhanced efficiency of dopamine (DA) transmission may compensate for the denervation of the striatum. To examine this hypothesis we have studied the extracellular concentration of striatal DA using brain dialysis. In control rats, haloperidol (1 mg/kg, i.p.) or depolarization of striatal tissue with 25 mM KCl increased, and gamma-butyrolactone (500 mg/kg, i.p.) decreased DA and homovanillic acid (HVA) levels in striatal dialysates. Three weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) to substantia nigra, DA content in the ipsilateral striatum was decreased by 60-98%. Nevertheless, extracellular DA concentration in the lesioned striata remained unchanged in rats with 60-90% DA depletions. More extensive lesions (96% DA depletion) were accompanied by 60% reduction in DA release. In contrast, extracellular HVA levels in the lesioned striata decreased proportionally to the depletion of tissue DA, indicating decreased inactivation of extracellular DA. We propose that the capacity of the residual DA terminals to maintain normal levels of extracellular DA after 60-90% NSB lesions may serve to compensate for the partial denervation of the striatal tissue. Disruption of striatal DA functions and postsynaptic supersensitivity after more extensive lesions may be associated with the failure of the NSB to fully compensate for loss of DA terminals. In striata contralateral to the 6-OHDA lesions, increased DA release was also observed. In addition, 60-90% ipsilateral DA depletions were accompanied by 32% and 42% increases in DA and HVA content in contralateral tissue, respectively. The possibility of the contralateral sprouting of DA terminals is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005663 Furans Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran. Tetrahydrofurans
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D006719 Homovanillic Acid A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. 3-Methoxy-4-Hydroxyphenylacetic Acid,4-Hydroxy-3-Methoxyphenylacetic Acid,3 Methoxy 4 Hydroxyphenylacetic Acid,4 Hydroxy 3 Methoxyphenylacetic Acid,Acid, 3-Methoxy-4-Hydroxyphenylacetic,Acid, 4-Hydroxy-3-Methoxyphenylacetic,Acid, Homovanillic
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
June 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
March 1971, Experimental neurology,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
April 1988, Brain research,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
August 2008, Brain research reviews,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
December 1985, Brain research,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
November 1974, Journal of comparative and physiological psychology,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
July 2007, NeuroImage,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
December 1997, Neuroscience,
W Q Zhang, and H A Tilson, and K P Nanry, and P M Hudson, and J S Hong, and M K Stachowiak
July 1984, Medical & biological engineering & computing,
Copied contents to your clipboard!