Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. 2019

Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea.

2,3-Butanediol (2,3-BD) can be produced at high titers by engineered Saccharomyces cerevisiae by abolishing the ethanol biosynthetic pathway and introducing the bacterial butanediol-producing pathway. However, production of 2,3-BD instead of ethanol by engineered S. cerevisiae has resulted in glycerol production because of surplus NADH accumulation caused by a lower degree of reduction (γ = 5.5) of 2,3-BD than that (γ = 6) of ethanol. In order to eliminate glycerol production and resolve redox imbalance during 2,3-BD production, both GPD1 and GPD2 coding for glycerol-3-phosphate dehydrogenases were disrupted after overexpressing NADH oxidase from Lactococcus lactis. As disruption of the GPD genes caused growth defects due to limited supply of C2 compounds, Candida tropicalis PDC1 was additionally introduced to provide a necessary amount of C2 compounds while minimizing ethanol production. The resulting strain (BD5_T2 nox_dGPD1,2_CtPDC1) produced 99.4 g/L of 2,3-BD with 0.5 g/L glycerol accumulation in a batch culture. The fed-batch fermentation led to production of 108.6 g/L 2,3-BD with a negligible amount of glycerol production, resulting in a high BD yield (0.462 g2,3-BD/gglucose) corresponding to 92.4 % of the theoretical yield. These results demonstrate that glycerol-free production of 2,3-BD by engineered yeast is feasible.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D011767 Pyruvate Decarboxylase Catalyzes the decarboxylation of an alpha keto acid to an aldehyde and carbon dioxide. Thiamine pyrophosphate is an essential cofactor. In lower organisms, which ferment glucose to ethanol and carbon dioxide, the enzyme irreversibly decarboxylates pyruvate to acetaldehyde. EC 4.1.1.1. 2-Oxo Acid Carboxy-Lyase,Pyruvic Decarboxylase,alpha-Carboxylase,alpha-Ketoacid Carboxylase,2 Oxo Acid Carboxy Lyase,Acid Carboxy-Lyase, 2-Oxo,Carboxy-Lyase, 2-Oxo Acid,Carboxylase, alpha-Ketoacid,Decarboxylase, Pyruvate,Decarboxylase, Pyruvic,alpha Carboxylase,alpha Ketoacid Carboxylase
D002072 Butylene Glycols 4-carbon straight chain aliphatic hydrocarbons substituted with two hydroxyl groups. The hydroxyl groups cannot be on the same carbon atom. Butanediols,Dihydroxybutanes,Glycols, Butylene
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D005993 Glycerolphosphate Dehydrogenase Alpha-Glycerophosphate Dehydrogenase,Glycerol-3-Phosphate Dehydrogenase,Glycerophosphate Dehydrogenase,Glycerophosphate Oxidase,Alpha Glycerophosphate Dehydrogenase,Dehydrogenase, Alpha-Glycerophosphate,Dehydrogenase, Glycerol-3-Phosphate,Dehydrogenase, Glycerolphosphate,Dehydrogenase, Glycerophosphate,Glycerol 3 Phosphate Dehydrogenase,Oxidase, Glycerophosphate
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
October 1996, Yeast (Chichester, England),
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
October 1998, Applied microbiology and biotechnology,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
November 2016, Biotechnology journal,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
November 2023, International journal of molecular sciences,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
October 2013, Bioresource technology,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
January 2012, Bioprocess and biosystems engineering,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
January 2016, Biotechnology for biofuels,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
June 2014, Applied microbiology and biotechnology,
Jin-Woo Kim, and Ye-Gi Lee, and Soo-Jung Kim, and Yong-Su Jin, and Jin-Ho Seo
September 2015, Metabolic engineering,
Copied contents to your clipboard!