Identification of glucose and nucleoside transport proteins in neonatal pig erythrocytes using monoclonal antibodies against band 4.5 polypeptides of adult human and pig erythrocytes. 1988

J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
McEachern Laboratory, University of Alberta, Edmonton, Canada.

Cytochalasin B and nitrobenzylthioinosine (NBMPR), which inhibit membrane transport of glucose and nucleosides, respectively, have served as photoaffinity ligands that become covalently linked at inhibitor binding sites on transporter-associated proteins. Thus, when membranes from erythrocytes of neonatal pigs with site-bound [3H]cytochalasin B or [3H]NBMPR were irradiated with uv light, two labeled membrane polypeptides (peak Mr values: 55,000 and 64,000, respectively) were identified. Treatment of the photolabeled membranes with endoglycosidase F increased the mobility of [3H]cytochalasin B- and [3H]NBMPR-labeled material (peak Mr values: 44,000 and 57,000, respectively) and limited digestion with trypsin yielded different polypeptide fragments (Mr values: 18,000-23,000 and 43,000, respectively). Identification of the photolabeled polypeptides as transporter components was established using monoclonal antibodies (MAbs) raised against partially purified preparations of band 4.5 from erythrocytes of adult pigs and humans. MAbs 65D4 and 64C7 (anti-human band 4.5), raised in this study, reacted with [3H]cytochalasin B-labeled material from membranes of human erythrocytes and bound to permeabilized erythrocytes but not to intact cells. MAb 65D4 also bound to erythrocytes of mice and neonatal pigs and to a variety of cultured cells (mouse, human, rat), including AE1 mouse lymphoma cells, which lack an NBMPR-sensitive nucleoside transporter. Also employed was MAb 11C4 (anti-pig band 4.5), which recognizes the NBMPR-binding protein of erythrocyte membranes from adult pigs. When membrane proteins from neonatal and adult pigs were subjected to electrophoretic analysis and blots were probed with different MAbs, MAb 65D4 (anti-human band 4.5) bound to material that comigrated with [3H]cytochalasin B-labeled polypeptides (band 4.5) from neonatal, but not adult, pig erythrocytes, whereas MAb 11C4 (anti-pig band 4.5) bound to material that comigrated with [3H]NBMPR-labeled band 4.5 polypeptides of erythrocytes from both neonatal and adult pigs. These results, which indicate structural differences in the cytochalasin B- and NBMPR-binding proteins of pig erythrocytes, establish the presence of both proteins in erythrocytes of neonatal pigs and suggest that only the NBMPR-binding protein is present in erythrocytes of adult pigs.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
September 1983, The Biochemical journal,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
October 1990, Biochimica et biophysica acta,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
November 1982, The Journal of cell biology,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
October 1984, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
November 1983, The Journal of biological chemistry,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
March 1991, The Journal of cell biology,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
September 1991, European journal of immunology,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
November 1978, The Journal of physiology,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
April 1983, Biochemical pharmacology,
J D Craik, and A H Good, and R Gottschalk, and S M Jarvis, and A R Paterson, and C E Cass
October 1975, Journal of medicinal chemistry,
Copied contents to your clipboard!