Phosphatase enzyme activity is retained in glutaraldehyde treated bioprosthetic heart valves. 1988

A R Maranto, and F J Schoen
Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115.

Calcification of bioprosthetic valves, which frequently causes their failure, begins in cell remnants analogous to matrix vesicles of physiologic mineralization. Because the enzyme alkaline phosphatase (AP) is important in normal skeletal mineralization, the authors hypothesized that AP also might be present in bioprosthetic valve tissue and thereby contribute to calcification. AP activity of fresh and glutaraldehyde (GLUT) treated bovine pericardium was measured by the conversion of p-nitrophenyl phosphate to p-nitrophenol. After 24 hrs in 0.6% HEPES buffered GLUT and storage for 2 weeks in 0.2% GLUT, considerable AP hydrolytic activity remained relative to that of fresh tissue (Vmax: 24 vs 45 microM reaction product/min/mg tissue protein, respectively), although binding was moderately reduced (KM: 1900 vs 1400 microM substrate, respectively). Light microscopic histochemistry suggested cell oriented AP activity. Ultrastructural examination of GLUT treated tissue demonstrated reaction product along membranes of vascular endothelial cells and fibroblasts, the sites of early calcific deposits in bioprosthetic valves. Thus, AP hydrolytic activity is largely preserved following GLUT treatment of bovine pericardium. These results indicate that the widely held view that GLUT eliminates all metabolic activities of bioprosthetic tissue is inaccurate and suggests that examination of the role of AP and other phosphatases may stimulate approaches for inhibiting calcification.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010496 Pericardium A conical fibro-serous sac surrounding the HEART and the roots of the great vessels (AORTA; VENAE CAVAE; PULMONARY ARTERY). Pericardium consists of two sacs: the outer fibrous pericardium and the inner serous pericardium. The latter consists of an outer parietal layer facing the fibrous pericardium, and an inner visceral layer (epicardium) resting next to the heart, and a pericardial cavity between these two layers. Epicardium,Fibrous Pericardium,Parietal Pericardium,Pericardial Cavity,Pericardial Space,Serous Pericardium,Visceral Pericardium,Cavities, Pericardial,Cavity, Pericardial,Pericardial Cavities,Pericardial Spaces,Pericardium, Fibrous,Pericardium, Parietal,Pericardium, Serous,Pericardium, Visceral,Pericardiums, Fibrous,Pericardiums, Serous,Serous Pericardiums,Space, Pericardial,Spaces, Pericardial
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D006350 Heart Valve Prosthesis A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material. Prosthesis, Heart Valve,Cardiac Valve Prosthesis,Cardiac Valve Prostheses,Heart Valve Prostheses,Prostheses, Cardiac Valve,Prostheses, Heart Valve,Prosthesis, Cardiac Valve,Valve Prostheses, Cardiac,Valve Prostheses, Heart,Valve Prosthesis, Cardiac,Valve Prosthesis, Heart
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001705 Bioprosthesis Prosthesis, usually heart valve, composed of biological material and whose durability depends upon the stability of the material after pretreatment, rather than regeneration by host cell ingrowth. Durability is achieved 1, mechanically by the interposition of a cloth, usually polytetrafluoroethylene, between the host and the graft, and 2, chemically by stabilization of the tissue by intermolecular linking, usually with glutaraldehyde, after removal of antigenic components, or the use of reconstituted and restructured biopolymers. Glutaraldehyde-Stabilized Grafts,Heterograft Bioprosthesis,Porcine Xenograft Bioprosthesis,Xenograft Bioprosthesis,Bioprostheses,Bioprostheses, Heterograft,Bioprostheses, Porcine Xenograft,Bioprostheses, Xenograft,Bioprosthesis, Heterograft,Bioprosthesis, Porcine Xenograft,Bioprosthesis, Xenograft,Glutaraldehyde Stabilized Grafts,Glutaraldehyde-Stabilized Graft,Graft, Glutaraldehyde-Stabilized,Grafts, Glutaraldehyde-Stabilized,Heterograft Bioprostheses,Porcine Xenograft Bioprostheses,Xenograft Bioprostheses,Xenograft Bioprostheses, Porcine,Xenograft Bioprosthesis, Porcine

Related Publications

A R Maranto, and F J Schoen
January 1992, Surgery,
A R Maranto, and F J Schoen
May 1996, The Journal of heart valve disease,
A R Maranto, and F J Schoen
October 1982, Archives of pathology & laboratory medicine,
A R Maranto, and F J Schoen
May 2007, Journal of occupational and environmental hygiene,
A R Maranto, and F J Schoen
June 1993, Journal of biomedical materials research,
A R Maranto, and F J Schoen
January 1994, The Journal of heart valve disease,
A R Maranto, and F J Schoen
May 1997, The Journal of heart valve disease,
A R Maranto, and F J Schoen
January 1994, The Journal of heart valve disease,
A R Maranto, and F J Schoen
November 2011, Journal of biomedical materials research. Part B, Applied biomaterials,
A R Maranto, and F J Schoen
September 1997, The Journal of thoracic and cardiovascular surgery,
Copied contents to your clipboard!