Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. 2019

Caitlyn Blake-Hedges, and Timothy L Megraw
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA. cb16j@my.fsu.edu.

The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.

UI MeSH Term Description Entries
D001756 Blastoderm A layer of cells lining the fluid-filled cavity (blastocele) of a BLASTULA, usually developed from a fertilized insect, reptilian, or avian egg. Blastoderms
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018385 Centrosome An organelle near the nucleus of the cell consisting (in animals and organisms that have CILIA) of two CENTRIOLES, and the surrounding pericentriolar material. It functions as the primary MICROTUBULE-ORGANIZING CENTER during the eukaryotic CELL CYCLE (https://doi.org/10.1038/nrm2180). Pericentriolar Material,Pericentriolar Matrix,Pericentriolar Region,Centrosomes,Material, Pericentriolar,Matrix, Pericentriolar,Pericentriolar Materials,Pericentriolar Matrices,Pericentriolar Regions,Region, Pericentriolar

Related Publications

Caitlyn Blake-Hedges, and Timothy L Megraw
January 2000, Current topics in developmental biology,
Caitlyn Blake-Hedges, and Timothy L Megraw
January 1975, Scripta medica,
Caitlyn Blake-Hedges, and Timothy L Megraw
January 1991, Doklady Akademii nauk SSSR,
Caitlyn Blake-Hedges, and Timothy L Megraw
January 2014, PloS one,
Caitlyn Blake-Hedges, and Timothy L Megraw
October 1991, Molecular & general genetics : MGG,
Caitlyn Blake-Hedges, and Timothy L Megraw
April 1982, Developmental biology,
Caitlyn Blake-Hedges, and Timothy L Megraw
June 1979, Experimental cell research,
Caitlyn Blake-Hedges, and Timothy L Megraw
February 1993, The Journal of cell biology,
Caitlyn Blake-Hedges, and Timothy L Megraw
July 2016, Science (New York, N.Y.),
Caitlyn Blake-Hedges, and Timothy L Megraw
January 1982, Cell,
Copied contents to your clipboard!