Role of amino acid residues important for nucleic acid binding in human Translin. 2019

Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.

Translin is a multifunctional DNA/RNA binding protein involved in DNA repair and RNA metabolism. It has two basic regions and involvement of some residues in these regions in nucleic acid binding is established experimentally. Here we report the functional role of four residues of basic region II, Y85, R86, H88, R92 and one residue of C terminal region, K193 in nucleic acid binding using substitution mutant variants. CD analysis of the mutant proteins showed that secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Octameric state was maintained in all the mutants of basic region as evidenced by TEM, DLS, native PAGE and gel filtration analyses. However, K193G mutation completely abolished the octameric state of Translin protein and consequently its ability to bind ssDNA/ssRNA. The mutants of the basic region II exhibited a differential effect on nucleic acid binding, with R86A and R92G as most deleterious. Interestingly, H88A mutant showed higher nucleic acid binding affinity in comparison to the wild type Translin. An in silico analysis of the mutant variant sequences predicted all the mutations to be destabilizing, causing increase in flexibility and also leading to disruption of local interactions. The differential effect of mutations on DNA/RNA binding where octameric state is maintained could be attributed to these predicted disturbances.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein

Related Publications

Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
November 2013, Nucleic acids research,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
September 2017, Plant physiology and biochemistry : PPB,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
April 1997, The Journal of experimental medicine,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
October 2020, BMC bioinformatics,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
June 2010, Biochemical and biophysical research communications,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
November 1971, Nature: New biology,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
September 2006, Journal of pharmacological sciences,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
August 1999, Journal of molecular biology,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
March 2019, Journal of lipid research,
Alka Gupta, and Vinayaki S Pillai, and Rajani Kant Chittela
January 2017, International journal of biological macromolecules,
Copied contents to your clipboard!