X-Ray Crystallographic Studies of G-Quadruplex Structures. 2019

Gary N Parkinson, and Gavin W Collie
UCL School of Pharmacy, University College London, London, UK. gary.parkinson@ucl.ac.uk.

The application of X-ray crystallographic methods toward a structural understanding of G-quadruplex (G4) motifs at atomic level resolution can provide researchers with exciting opportunities to explore new structural arrangements of putative G4 forming sequences and investigate their recognition by small molecule compounds. The crowded and ordered crystalline environment requires the self-assembly of stable G4 motifs, allowing for an understanding of their inter- and intramolecular interactions in a packed environment, revealing thermodynamically stable topologies. Additionally, crystallographic data derived from these experiments in the form of electron density provides valuable opportunities to visualize various solvent molecules associated with G4s along with the geometries of the metal ions associated within the central channel-elements critical to the understanding G4 stability and topology. Now, with the advent of affordable, commercially sourced and purified synthetic DNA and RNA molecules suitable for immediate crystallization trials, and combined with the availability of specialized and validated crystallization screens, researchers can now undertake in-house crystallization trials without the need for local expertise. When this is combined with access to modern synchrotron platforms that offer complete automation of the data collection process-from the receipt of crystals to delivery of merged and scaled data for the visualization of electron density-the application of X-ray crystallographic techniques is made open to nonspecialist researchers. In this chapter we aim to provide a simple how-to guide to enable the reader to undertake crystallographic experiments involving G4s, encompassing the design of oligonucleotide sequences, fundamentals of the crystallization process and modern strategies used in setting up successful crystallization trials. We will also describe data collection strategies, phasing, electron density visualization, and model building. We will draw on our own experiences in the laboratory and hopefully build an appreciation of the utility of the X-ray crystallographic approaches to investigating G4s.

UI MeSH Term Description Entries
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D054856 G-Quadruplexes Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15) DNA G-Quadruplexes,DNA, Quadruplex,G-Quadruplexes, DNA,G-Quadruplexes, RNA,Guanine-Quadruplexes,Guanine-Quartets,Guanine-Tetrads,Quadruplex DNA,RNA, G-Quadruplexes,Tetraplex DNA,DNA G Quadruplexes,DNA, Tetraplex,G Quadruplexes,G Quadruplexes, DNA,G Quadruplexes, RNA,G-Quadruplexes RNA,G-Quadruplexes RNAs,Guanine Quadruplexes,Guanine Quartets,Guanine Tetrads,Guanine-Quartet,Guanine-Tetrad,RNA G-Quadruplexes,RNA, G Quadruplexes,RNAs, G-Quadruplexes
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Gary N Parkinson, and Gavin W Collie
January 1955, Acta radiologica. Supplementum,
Gary N Parkinson, and Gavin W Collie
January 2019, Methods in molecular biology (Clifton, N.J.),
Gary N Parkinson, and Gavin W Collie
January 1977, Advances in experimental medicine and biology,
Gary N Parkinson, and Gavin W Collie
January 1973, Contemporary topics in molecular immunology,
Gary N Parkinson, and Gavin W Collie
January 2014, Methods in molecular biology (Clifton, N.J.),
Gary N Parkinson, and Gavin W Collie
May 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Gary N Parkinson, and Gavin W Collie
December 2001, Journal of structural biology,
Gary N Parkinson, and Gavin W Collie
January 1972, Cold Spring Harbor symposia on quantitative biology,
Gary N Parkinson, and Gavin W Collie
January 1967, Acta oto-laryngologica,
Gary N Parkinson, and Gavin W Collie
January 2011, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!