Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. 2019

Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.

DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D013463 Sulfuric Acid Esters Organic esters of sulfuric acid. Sulfates, Organic,Thiosulfuric Acid Esters,Organic Sulfates,Esters, Sulfuric Acid,Esters, Thiosulfuric Acid
D054856 G-Quadruplexes Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15) DNA G-Quadruplexes,DNA, Quadruplex,G-Quadruplexes, DNA,G-Quadruplexes, RNA,Guanine-Quadruplexes,Guanine-Quartets,Guanine-Tetrads,Quadruplex DNA,RNA, G-Quadruplexes,Tetraplex DNA,DNA G Quadruplexes,DNA, Tetraplex,G Quadruplexes,G Quadruplexes, DNA,G Quadruplexes, RNA,G-Quadruplexes RNA,G-Quadruplexes RNAs,Guanine Quadruplexes,Guanine Quartets,Guanine Tetrads,Guanine-Quartet,Guanine-Tetrad,RNA G-Quadruplexes,RNA, G Quadruplexes,RNAs, G-Quadruplexes
D024202 Electrophoretic Mobility Shift Assay An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded. Gelshift Analysis,Mobility Shift Assay,Band Shift Mobility Assay,Bandshift Mobility Assay,EMSA Electrophoretic Technique,Gel Retardation Assay,Gel Shift Analysis,Supershift Mobility Assay,Analyses, Gel Shift,Analysis, Gel Shift,Assay, Bandshift Mobility,Assay, Gel Retardation,Assay, Mobility Shift,Assay, Supershift Mobility,Assays, Bandshift Mobility,Assays, Gel Retardation,Assays, Mobility Shift,Assays, Supershift Mobility,Bandshift Mobility Assays,EMSA Electrophoretic Techniques,Electrophoretic Technique, EMSA,Electrophoretic Techniques, EMSA,Gel Retardation Assays,Gel Shift Analyses,Mobility Assay, Bandshift,Mobility Assay, Supershift,Mobility Assays, Bandshift,Mobility Assays, Supershift,Mobility Shift Assays,Supershift Mobility Assays,Technique, EMSA Electrophoretic,Techniques, EMSA Electrophoretic

Related Publications

Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 2015, Methods in molecular biology (Clifton, N.J.),
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 2013, Methods in molecular biology (Clifton, N.J.),
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
April 2014, Cold Spring Harbor protocols,
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 1995, Methods in enzymology,
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
October 2018, Cold Spring Harbor protocols,
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 2011, Methods in molecular biology (Clifton, N.J.),
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
March 2019, Current protocols in nucleic acid chemistry,
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 2015, Methods in molecular biology (Clifton, N.J.),
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
January 2001, Methods in molecular medicine,
Buket Onel, and Guanhui Wu, and Daekyu Sun, and Clement Lin, and Danzhou Yang
February 1998, BioTechniques,
Copied contents to your clipboard!