A DNA Polymerase Stop Assay for Characterization of G-Quadruplex Formation and Identification of G-Quadruplex-Interactive Compounds. 2019

Guanhui Wu, and Haiyong Han
Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.

Guanine-rich DNA sequences are able to spontaneously fold into G-quadruplex structures in the presence of certain metal cations. In the human genome, the majority of DNA G-quadruplexes form at the telomeres and regulatory regions of cancer-related genes. The formation of these structures is implicated in nuclear processes involving DNA, including transcription, DNA replication, and DNA repair. In the past few decades, small molecules which can stabilize these structures have been shown to suppress the telomere extension and to inhibit oncogene transcription. Therefore, DNA G-quadruplexes are thought to be attractive targets for new anticancer therapies. In this chapter, we describe step by step a DNA polymerase extension method for the characterization of G-quadruplex formation and identification of G-quadruplex-interactive compounds. This method is based on the principle that DNA polymerase is incapable to resolve G-quadruplex structure and pauses at 3'-end of the G-quadruplex forming region when it transverses to the 5'-end of the template. Results from the DNA polymerase stop assay can provide the basis for further studies aimed at elucidating the major G-quadruplexes formed by sequences consisting of more than four runs of contiguous guanines, as well as the specificity of G-quadruplex-interactive molecules in binding different G-quadruplex topologies.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D054856 G-Quadruplexes Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15) DNA G-Quadruplexes,DNA, Quadruplex,G-Quadruplexes, DNA,G-Quadruplexes, RNA,Guanine-Quadruplexes,Guanine-Quartets,Guanine-Tetrads,Quadruplex DNA,RNA, G-Quadruplexes,Tetraplex DNA,DNA G Quadruplexes,DNA, Tetraplex,G Quadruplexes,G Quadruplexes, DNA,G Quadruplexes, RNA,G-Quadruplexes RNA,G-Quadruplexes RNAs,Guanine Quadruplexes,Guanine Quartets,Guanine Tetrads,Guanine-Quartet,Guanine-Tetrad,RNA G-Quadruplexes,RNA, G Quadruplexes,RNAs, G-Quadruplexes

Related Publications

Guanhui Wu, and Haiyong Han
January 1999, Nucleic acids research,
Guanhui Wu, and Haiyong Han
January 2010, Methods in molecular biology (Clifton, N.J.),
Guanhui Wu, and Haiyong Han
January 2011, Methods in molecular biology (Clifton, N.J.),
Guanhui Wu, and Haiyong Han
January 2017, Methods in molecular biology (Clifton, N.J.),
Guanhui Wu, and Haiyong Han
January 2019, Methods in molecular biology (Clifton, N.J.),
Guanhui Wu, and Haiyong Han
January 2019, Methods in molecular biology (Clifton, N.J.),
Guanhui Wu, and Haiyong Han
March 2014, Nucleic acids research,
Copied contents to your clipboard!