Exploring Sequence Space to Identify Binding Sites for Regulatory RNA-Binding Proteins. 2019

Ravinder Singh
Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder; ravinder.singh@colorado.edu.

Gene regulation plays an important role in all cells. Transcriptional, post-transcriptional (or RNA processing), translational, and post-translational steps are used to regulate specific genes. Sequence-specific nucleic acid-binding proteins target specific sequences to control spatial or temporal gene expression. The binding sites in nucleic acids are typically characterized by mutational analysis. However, numerous proteins of interest have no known binding site for such characterization. Here we describe an approach to identify previously unknown binding sites for RNA-binding proteins. It involves iterative selection and amplification of sequences starting with a randomized sequence pool. Following several rounds of these steps-transcription, binding, and amplification-the enriched sequences are sequenced to identify a preferred binding site(s). Success of this approach is monitored using in vitro binding assays. Subsequently, in vitro and in vivo functional assays can be used to assess the biological relevance of the selected sequences. This approach allows identification and characterization of a previously unknown binding site(s) for any RNA-binding protein for which an assay to separate protein-bound and unbound RNAs exists.

UI MeSH Term Description Entries
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

Ravinder Singh
February 2020, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Ravinder Singh
July 2010, Journal of visualized experiments : JoVE,
Ravinder Singh
February 2013, Cold Spring Harbor protocols,
Ravinder Singh
January 2016, Methods in molecular biology (Clifton, N.J.),
Ravinder Singh
August 2006, RNA (New York, N.Y.),
Ravinder Singh
January 2011, Sub-cellular biochemistry,
Copied contents to your clipboard!