Inhibitory effect of Sertoli cell-cultured media on LH binding to mouse Leydig cells in culture. 1988

M Takase, and K Tsutsui, and S Kawashima
Zoological Institute, Faculty of Science, Hiroshima University, Japan.

The aim of this study is to examine the influence of Sertoli cells on LH binding to Leydig cells in culture in immature mice. Leydig cells and Sertoli cells were obtained from the testes of immature C57BL/6Ncrj mice and were cultured in serum-free medium for 7 days. The LH binding to Leydig cells and the FSH binding to Sertoli cells were dependent on incubation time, the number of cells, and the amount of labelled hormone added. The dissociation constant for LH binding to Leydig cells was 7.3 x 10(-10) M. Co-culture of Leydig cells with Sertoli cells for 7 days decreased LH binding to Leydig cells. The binding was 34.9% of that to Leydig cells cultured alone. After cultivation of Leydig cells with spent Sertoli cell-cultured medium (SM) for the last 4 days of the 7-day culture period, LH binding to Leydig cells decreased to as low as 17.4% of that of the controls. For the controls, LH binding was measured in Leydig cells cultured in spent Leydig cell-cultured medium (LM). There was no difference between SM- and LM-cultures in the final survival rate or the percentage of cells showing histochemically demonstrated 3 beta-hydroxysteroid dehydrogenase activity. These data suggest that some factor or factors are secreted from the cultured Sertoli cells and inhibit the binding of LH to Leydig cells in culture.

UI MeSH Term Description Entries
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006062 Gonadotropins Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities. Gonadotropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli

Related Publications

M Takase, and K Tsutsui, and S Kawashima
February 1985, The American journal of physiology,
M Takase, and K Tsutsui, and S Kawashima
October 1987, Canadian journal of physiology and pharmacology,
M Takase, and K Tsutsui, and S Kawashima
December 1981, Endocrinologia experimentalis,
M Takase, and K Tsutsui, and S Kawashima
October 1985, Molecular and cellular endocrinology,
M Takase, and K Tsutsui, and S Kawashima
June 2008, Reproduction (Cambridge, England),
M Takase, and K Tsutsui, and S Kawashima
January 1979, Bulletin de l'Academie polonaise des sciences. Serie des sciences biologiques,
M Takase, and K Tsutsui, and S Kawashima
July 1998, Acta histochemica,
M Takase, and K Tsutsui, and S Kawashima
March 1989, Journal of molecular endocrinology,
Copied contents to your clipboard!