Calcium-dependent potassium conductance in neurons of rabbit vesical pelvic ganglia. 1988

T Nishimura, and T Tokimasa, and T Akasu
Department of Physiology, Kurume University School of Medicine, Japan.

Intracellular recordings were made from neurons of vesical pelvic (parasympathetic) ganglia (VPG) isolated from the rabbit urinary bladder. Spontaneous hyperpolarizations (SH), occurring at intervals of 30 s to 5 min, could be recorded from 53% of VPG neurons in Krebs solution. The action potential was associated with inward sodium and calcium currents and was followed by fast and slow afterhyperpolarizations (AHPs). The action potential also evoked an additional hyperpolarization which was identical to the SH. The SH and the AHPs were associated with a decrease in the input resistance and reversed their polarity close to the potassium equilibrium potential. Intracellular cesium ions blocked the AHPs and the SH. Superfusing the preparation with a calcium-free solution produced a depolarization associated with an increased input resistance. The outward rectification activated at the resting membrane potential was depressed in the calcium-free solution. The removal of extracellular calcium ions also depressed both the SH and the spike AHPs. Bath-application of caffeine (1-3 mM) increased the frequency of the appearance of the SH. Injection of EGTA into VPG neurons caused a depolarization due to a blockade of the outward rectification. EGTA also depressed the slow AHP and the SH. These results suggest that the neuronal membrane of the rabbit VPG is endowed with a calcium-dependent potassium conductance (gKCa). Apamin (0.3-5 nM) and (+)-tubocurarine (30-300 microM) blocked the slow AHP and the SH without affecting the fast AHP and the resting membrane potential. Tetraethylammonium (TEA, 0.3-5 mM) suppressed the fast AHP and the SH without affecting the outward rectification. TEA augmented the slow AHP. Barium ions (0.1-1 mM) depressed the AHPs, the SH and the outward rectification. These pharmacological properties imply that at least 3 kinds of gKCa systems underlie the generation of the outward rectification, the spike AHPs and the SH.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010388 Pelvis The space or compartment surrounded by the pelvic girdle (bony pelvis). It is subdivided into the greater pelvis and LESSER PELVIS. The pelvic girdle is formed by the PELVIC BONES and SACRUM. Pelvic Region,Region, Pelvic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias

Related Publications

T Nishimura, and T Tokimasa, and T Akasu
December 1985, Journal of neurophysiology,
T Nishimura, and T Tokimasa, and T Akasu
November 1992, The Journal of physiology,
T Nishimura, and T Tokimasa, and T Akasu
January 1985, Journal of neurophysiology,
T Nishimura, and T Tokimasa, and T Akasu
July 1993, Regulatory peptides,
T Nishimura, and T Tokimasa, and T Akasu
June 1995, Neuroscience letters,
T Nishimura, and T Tokimasa, and T Akasu
January 1990, The Japanese journal of physiology,
T Nishimura, and T Tokimasa, and T Akasu
November 1982, Journal of neurobiology,
T Nishimura, and T Tokimasa, and T Akasu
March 2009, Pflugers Archiv : European journal of physiology,
T Nishimura, and T Tokimasa, and T Akasu
August 1987, The Journal of physiology,
Copied contents to your clipboard!