Interplay between substrate recognition, 5' end tRNA processing and methylation activity of human mitochondrial RNase P. 2019

Agnes Karasik, and Carol A Fierke, and Markos Koutmos
Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.

Human mitochondrial ribonuclease P (mtRNase P) is an essential three-protein complex that catalyzes the 5' end maturation of mitochondrial precursor tRNAs (pre-tRNAs). Mitochondrial RNase P Protein 3 (MRPP3), a protein-only RNase P (PRORP), is the nuclease component of the mtRNase P complex and requires a two-protein S-adenosyl-methionine (SAM)-dependent methyltransferase MRPP1/2 subcomplex to function. Dysfunction of mtRNase P is linked to several human mitochondrial diseases, such as mitochondrial myopathies. Despite its central role in mitochondrial RNA processing, little is known about how the protein subunits of mtRNase P function synergistically. Here, we use purified mtRNase P to demonstrate that mtRNase P recognizes, cleaves, and methylates some, but not all, mitochondrial pre-tRNAs in vitro. Additionally, mtRNase P does not process all mitochondrial pre-tRNAs uniformly, suggesting the possibility that some pre-tRNAs require additional factors to be cleaved in vivo. Consistent with this, we found that addition of the TRMT10C (MRPP1) cofactor SAM enhances the ability of mtRNase P to bind and cleave some mitochondrial pre-tRNAs. Furthermore, the presence of MRPP3 can enhance the methylation activity of MRPP1/2. Taken together, our data demonstrate that the subunits of mtRNase P work together to efficiently recognize, process, and methylate human mitochondrial pre-tRNAs.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D043262 Ribonuclease P An RNA-containing enzyme that plays an essential role in tRNA processing by catalyzing the endonucleolytic cleavage of TRANSFER RNA precursors. It removes the extra 5'-nucleotides from tRNA precursors to generate mature tRNA molecules. Ribonuclease P, RNA Catalytic Subunit,RNA Catalytic Subunit, Ribonuclease P,RNase P

Related Publications

Agnes Karasik, and Carol A Fierke, and Markos Koutmos
June 1998, Biochemical and biophysical research communications,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
January 2016, Journal of molecular biology,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
January 2007, Nucleic acids research,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
July 2009, Mitochondrion,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
April 2022, Nature communications,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
November 1998, Biochemistry,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
December 2001, Molecular and cellular biology,
Agnes Karasik, and Carol A Fierke, and Markos Koutmos
January 2005, Nucleic acids research,
Copied contents to your clipboard!