The role of phosphatidylinositides in stimulus-secretion coupling in the exocrine pancreas. 1987

I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
Max-Planck-Institut für Biophysik, Frankfurt/Main, Federal Republic of Germany.

Cell activation of different cell types is accompanied by receptor-mediated stimulation of phospholipase C and a consequent breakdown of phosphatidylinositol 4,5-bisphosphate. Evidence suggests that GTP-binding proteins are involved in this signal transduction mechanism, which couples receptors to phospholipase C. Both the hydrolysis products diacylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3) are intracellular messengers for cellular responses such as secretion, as illustrated by the pancreatic acinar cell. IP3 releases Ca2+ from a nonmitochondrial Ca2+ pool likely to be the endoplasmic reticulum (ER). This Ca2+ release leads to a transient rise in the cytosolic free Ca2+ concentration from approximately 100 to approximately 800 nmol/liter, by which enzyme secretion is initiated. For sustained secretion, Ca2+ influx into the cell is necessary to keep the cytosolic free Ca2+ concentration at a slightly elevated level. Activation of protein kinase C by DG and Ca2+ seems to play a major role in the second, sustained phase of secretion. Ca2+ reuptake into the ER and Ca2+ extrusion from the cell are achieved by (Ca2+ + Mg2+)-ATPase in both the ER and the plasma membrane as well as by an Na+/Ca2+ exchange in the latter. In the final step of exocytosis, protein phosphorylation by Ca2+-, DG-, and cAMP-dependent protein kinases is probably involved.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate

Related Publications

I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
September 1981, Canadian journal of physiology and pharmacology,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
January 1983, Proceedings of the Western Pharmacology Society,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
March 1981, The American journal of physiology,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
September 1990, Pancreas,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
September 1990, Pancreas,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
November 1980, Journal of cellular physiology,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
December 1986, The Journal of cell biology,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
November 1978, The Journal of physiology,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
November 1978, Biochimica et biophysica acta,
I Schulz, and S Schnefel, and H Banfić, and F Thévenod, and T Kemmer, and L Eckhardt
February 1983, The Biochemical journal,
Copied contents to your clipboard!