Expression and phosphorylation of the mid-sized neurofilament protein NF-M during chick spinal cord neurogenesis. 1988

G S Bennett, and B A Hollander, and D Laskowska
Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville.

The middle molecular weight polypeptide of neurofilaments (NF-M) is modified posttranslationally by extensive phosphorylation. This modification is slow in mature neurons, requiring approximately 24-48 hr for completion and probably occurs outside of the cell soma (Bennett and DiLullo: J Cell Biol 100:1799, 1985c). Thus, NF-M synthesis and phosphorylation are separate events both temporally and spatially. Although it is known that NF-M is among the earliest neuron-specific gene products to be expressed during nervous system development, it is not known what the temporal relationship is between the initiation of NF-M translation and its phosphorylation. To address this question, we have produced an antiserum against the dephosphorylated form of NF-M (NF-M130) and have used this antiserum, together with a previously characterized antiserum against completely phosphorylated NF-M (NF-M160), in an immunohistochemical examination of neurogenesis and the initial period of neuronal differentiation in chick spinal cord. We found that 1) nonphosphorylated and partially phosphorylated NF-M cannot be detected prior to the completion of the terminal mitosis; 2) most postmitotic neuroblasts begin expressing NF-M as they commence migration, but do not contain the completely phosphorylated polypeptide until some time after completion of migration; and 3) those precursor cells of a subpopulation of neuroblasts that begin expressing completely phosphorylated NF-M during their terminal cell cycle (Bennett and DiLullo: Dev Biol 107:94, 1985a) contain no detectable nonphosphorylated or partially phosphorylated NF-M. These cells probably complete the phosphorylation step more rapidly than do mature neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament

Related Publications

G S Bennett, and B A Hollander, and D Laskowska
April 1991, Journal of neurochemistry,
G S Bennett, and B A Hollander, and D Laskowska
September 1992, Brain research. Molecular brain research,
G S Bennett, and B A Hollander, and D Laskowska
September 2014, Neural regeneration research,
G S Bennett, and B A Hollander, and D Laskowska
January 1999, Folia biologica,
G S Bennett, and B A Hollander, and D Laskowska
October 2001, Kaibogaku zasshi. Journal of anatomy,
G S Bennett, and B A Hollander, and D Laskowska
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!