Inhibition of striatal acetylcholine release by serotonin and dopamine after the intracerebral administration of 6-hydroxydopamine to neonatal rats. 1988

D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
Department of Behavioral Neuroscience, University of Pittsburgh, PA 15260.

The intraventricular administration of 6-hydroxydopamine (6-OHDA) depletes the striatum of dopamine (DA). When given to rat pups at an early age, the toxin also increases striatal serotonin (5-HT) content. In the accompanying report we observed that endogenous 5-HT, like DA, exerts an inhibitory influence on the release of acetylcholine (ACh) from striatal slices prepared from control animals and that the extent of this inhibition is related to the degree of serotonergic innervation of the region being examined. To determine whether this hyperinnervation was accompanied by an increase in serotonergic influence on ACh release, striatal slices were prepared from adult rats, preincubated with [3H]choline, superfused, and exposed to electrical field stimulation. The efflux of tritium into the superfusate was used as a measure of ACh release. In confirmation of previous reports, we observed that direct and indirect agonists of DA and 5-HT both reduced ACh overflow from control slices, whereas overflow was increased by antagonists of these amines. Slices prepared from rats given 6-OHDA-induced lesions as adults were responsive to each of these pharmacological manipulations, as well. In contrast, ACh overflow from slices prepared from animals lesioned with 6-OHDA as neonates was not modified by either dopaminergic or serotonergic drugs. These results suggest that the serotonergic hyperinnervation of striatum produced by neonatal 6-OHDA is accompanied by a loss of the inhibitory influence of endogenous 5-HT and DA on striatal ACh release and, thus, provide no evidence for a role for either transmitter in the behavioral sparing associated with such lesions.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
September 1989, European journal of pharmacology,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
June 2008, Neuroscience letters,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
October 1996, Brain research,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
May 1998, Neuroscience letters,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
June 1974, Brain research,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
August 1994, The Journal of pharmacology and experimental therapeutics,
D Jackson, and J P Bruno, and M K Stachowiak, and M J Zigmond
February 2006, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!