Potential interactions between GABAb and cholinergic systems: baclofen augments scopolamine-induced performance deficits in the eight-arm radial maze. 1988

E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
Laboratory of Molecular and Integrative Neuroscience, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

Sixteen male Fischer-344N rats were trained on a eight-arm radial maze task for food reinforcement. The effects of various doses of baclofen (1.25 or 2.50 mg/kg) and scopolamine (0.188, 0.375, and 0.750 mg/kg) were determined alone and in combination. Relative to vehicle controls, baclofen alone did not affect performance in the radial arm maze (number correct in the first eight responses, total errors) or the time required to complete the maze. Scopolamine alone decreased the number of correct responses in the first eight arm choices, while increasing both the number of errors and the time necessary to complete the maze. When the two drugs were co-administered, baclofen had no effect on the number of errors or time required to complete the maze in the presence of scopolamine; however, in combination with the high dose of scopolamine, it significantly increased the number of errors made during the first eight choices. Baclofen thus can exacerbate some radial arm maze dificits produced by an anticholinergic drug. In a subsequent experiment to test the interaction between scopolamine and baclofen using a nonlearned behavior, baclofen (1.25 and 2.5 mg/kg) did not affect motor activity, whereas all doses of scopolamine (0.188-0.75 mg/kg) increased activity. The higher dose of baclofen attenuated scopolamine-induced hypermotility by 50%, but the lower dose of baclofen was not effective. These data demonstrate pharmacological interactions between baclofen, a drug used clinically for spaticity, and a drug having anticholinergic properties.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
March 1988, Behavioral and neural biology,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
September 1988, Behavioral and neural biology,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
January 1986, Behavioural brain research,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
June 1991, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
October 2000, Pharmacological research,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
August 1987, Brain research,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
October 1995, Biological & pharmaceutical bulletin,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
March 2012, Schizophrenia research,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
April 1980, Pharmacology, biochemistry, and behavior,
E S Sidel, and H A Tilson, and R L McLamb, and W A Wilson, and H S Swartzwelder
October 1982, The Journal of general psychology,
Copied contents to your clipboard!