Dexmedetomidine Attenuates Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling pathway. 2019

Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China.

Dexmedetomidine (DEX) exhibits neuroprotective effects as a multifunctional neuroprotective agent in numerous neurological disorders. However, in traumatic brain injury (TBI), the molecular mechanisms of these neuroprotective effects remain unclear. The present study investigated whether DEX, which has been reported to exert protective effects against TBI, could attenuate neuroinflammatory-induced apoptosis and clarified the underlying mechanisms. A weight-drop model was established, and DEX was intraperitoneally injected 30 min after inducing TBI in rats. The water content in the brain tissue was measured. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays were performed on histopathological tissue sections to evaluate neuronal apoptosis. Enzyme-linked immunosorbent assay and PCR were applied to detect the levels of the inflammatory factors, TNF-α, IL-1β, IL-6, and NF-κB. TBI-challenged rats exhibited significant neuronal apoptosis, which was characterized via the wet-to-dry weight ratio, neurobehavioral functions, TUNEL assay results and the levels of cleaved caspase-3, Bax upregulation and Bcl-2, which were attenuated by DEX. Western blot, immunohistochemistry, and PCR results revealed that DEX promoted Nrf2 expression and upregulated expression of the Nrf2 downstream factors, HO-1 and NQO-1. Furthermore, DEX treatment markedly prevented the downregulation of inflammatory response factors, TNF-α, IL-1β and NF-κB, and IL-6. Administering DEX attenuated inflammation-induced brain injury in a TBI model, potentially via the Nrf2 signaling pathway.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000070642 Brain Injuries, Traumatic A form of acquired brain injury which occurs when a sudden trauma causes damage to the brain. Trauma, Brain,Traumatic Brain Injury,Encephalopathy, Traumatic,Injury, Brain, Traumatic,TBI (Traumatic Brain Injury),TBIs (Traumatic Brain Injuries),Traumatic Encephalopathy,Brain Injury, Traumatic,Brain Trauma,Brain Traumas,Encephalopathies, Traumatic,TBI (Traumatic Brain Injuries),Traumas, Brain,Traumatic Brain Injuries,Traumatic Encephalopathies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051267 NF-E2-Related Factor 2 A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage. Nfe2l2 Protein,Nuclear Factor (Erythroid-Derived 2)-Like 2 Protein,Nuclear Factor E2-Related Factor 2,NF E2 Related Factor 2,Nuclear Factor E2 Related Factor 2
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective
D020927 Dexmedetomidine An imidazole derivative that is an agonist of ADRENERGIC ALPHA-2 RECEPTORS. It is closely related to MEDETOMIDINE, which is the racemic form of this compound. Cepedex,Dexdomitor,Dexdor,Igalmi,Sedadex,Sileo,Dexmedetomidine Hydrochloride,MPV-1440,Precedex,Hydrochloride, Dexmedetomidine,MPV 1440,MPV1440

Related Publications

Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
December 2018, Neurochemical research,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
January 2022, Frontiers in pharmacology,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
February 2019, Neurochemical research,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
May 2018, Neural regeneration research,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
January 2018, Drug design, development and therapy,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
January 2018, Drug design, development and therapy,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
August 2023, Journal of neurosurgical sciences,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
July 2022, Neuroscience,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
January 2023, PloS one,
Fayin Li, and Xiaodong Wang, and Zhijie Zhang, and Xianlong Zhang, and Pengfei Gao
April 2020, Brain research,
Copied contents to your clipboard!