Neurofilament gene expression following beta,beta'-iminodipropionitrile (IDPN) intoxication. 1988

I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
Department of Pathology, University of Calgary, Alta., Canada.

beta,beta'-Iminodipropionitrile (IDPN) is an agent that produces a disorganization of the axonal cytoskeleton with massive accumulation of neurofilaments in the proximal axon. Abnormalities in axonal transport of neurofilament proteins and in their phosphorylation occur in this model. In this study we evaluated the gene expression of neurofilament and other cytoskeletal components at an early, intermediate and late stage of intoxication to determine whether this neuropathy is directly due to or secondarily affects the expression of these components. Specific cytoskeletal mRNA expression was evaluated in the spinal cords of rats treated with IDPN for varying durations using Northern analysis and in situ hybridization. Our results show no qualitative or quantitative alteration in the mRNA expression of the neurofilament triplet, alpha-tubulin, alpha-actin or glial fibrillary acidic protein. We conclude that abnormalities at various stages of cytoskeletal processing such as the early disorganization of the cytoskeleton, the impairment of neurofilament transport, and the long-term redistribution of neurofilaments along the axon are not directly due to, nor do they affect the gene expression of cytoskeletal components in IDPN neuropathy.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
January 1986, Brain research,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
June 1998, Neuroscience letters,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
January 1988, Journal of submicroscopic cytology and pathology,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
January 1985, Acta neuropathologica,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
November 1989, Journal of neuropathology and experimental neurology,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
January 1987, Molecular toxicology,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
October 1988, Neuroscience letters,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
September 1965, Journal of pharmaceutical sciences,
I M Parhad, and E A Swedberg, and D I Hoar, and C A Krekoski, and A W Clark
January 1984, General pharmacology,
Copied contents to your clipboard!