Evolution of protein inhibitors of serine proteinases: positive Darwinian selection or compositional effects? 1988

D Graur, and W H Li
Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University, Ramat Aviv, Israel.

In at least two instances involving serine proteinase inhibitors it has been shown that functionally important sites evolve faster and exhibit more interspecific variability than functionally neutral sites. Because these phenomena are difficult to reconcile with the neutral theory of molecular evolution, it has been suggested that the accelerated rate of amino acid substitution at the reactive sites is brought about by positive Darwinian selection. We show that differences in the amino acid composition in the different regions of proteinase inhibitors can account for the differences in the rates of amino acid substitution. By using an index of protein mutability [D. Graur (1985) J Mol Evol 22:53-62], we show that the amino acid composition of the reactive center in the ovomucoids and Spi-2 gene products is such that, regardless of function, they are expected to evolve more rapidly than any other polypeptide for which the rate of substitution is known. In addition, the reactive region in the Spi-2 proteins is shown to be free of compositional constraint. Positive Darwinian selection need not be invoked at the present time in these cases.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001717 Birds Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves. Aves,Bird
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015842 Serine Proteinase Inhibitors Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES. Serine Endopeptidase Inhibitor,Serine Endopeptidase Inhibitors,Serine Protease Inhibitor,Serine Protease Inhibitors,Serine Proteinase Antagonist,Serine Proteinase Antagonists,Serine Proteinase Inhibitor,Serine Proteinase Inhibitors, Endogenous,Serine Proteinase Inhibitors, Exogenous,Serine Protease Inhibitors, Endogenous,Serine Protease Inhibitors, Exogenous,Antagonist, Serine Proteinase,Endopeptidase Inhibitor, Serine,Inhibitor, Serine Endopeptidase,Inhibitor, Serine Protease,Inhibitor, Serine Proteinase,Protease Inhibitor, Serine,Proteinase Antagonist, Serine,Proteinase Inhibitor, Serine

Related Publications

D Graur, and W H Li
January 1987, Cold Spring Harbor symposia on quantitative biology,
D Graur, and W H Li
January 1999, Acta biochimica Polonica,
D Graur, and W H Li
November 2008, Molecular biology and evolution,
D Graur, and W H Li
January 1986, Advances in experimental medicine and biology,
D Graur, and W H Li
January 2008, Annual review of physical chemistry,
D Graur, and W H Li
March 2010, Journal of plant research,
D Graur, and W H Li
July 2000, Genetics,
Copied contents to your clipboard!