Dynamic Changes of RFRP3/GPR147 in the Precocious Puberty Model Female Rats. 2019

Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
Traditional Chinese Medicine Department, Children's Hospital of Fudan University, Shanghai 201102, China.

Pubertal development is a complex physiological process regulated by the neuroendocrine system and hypothalamic-pituitary-gonadal axis. Sexual precocity is a common childhood endocrine disease.The pathogenesis of sexual precocity has not been fully elucidated. RFRP3/GPRl47 signal pathway is able to inhibit the reproductive capability in avians and mammals, probably by acting on the GnRH neuron and pituitary to regulate gonadotrophin synthesis and release. However, little is known about the role of RFRP3 in puberty development and sexual precocity. To observe the dynamic changes of RFamide related peptide 3/G proteincoupled receptor 147 (RFRP3/GPR147) in hypothalamic during puberty development and explore their role in precocious puberty based on a female rat model. The Sprague-Dawley female rats were randomly divided into three groups, normal, vehicle, and precocious puberty model. At 5 days old, the rat model with precocious puberty was prepared by subcutaneously injecting a mixture of danazoldissolved ethanol and glycol. At different day-age (15, 25, 30, 35, and 40 days), the levels of estradiol(E2), follicle-stimulating hormone(FSH), and luteinizing hormone (LH) in the peripheral blood were detected by the enzyme-linked immunosorbent assay, the messenger ribonucleic acid (mRNA) expressions of RFRP3, gonadotropin releasing hormone and GPR147 were examined by real-time polymerase chain reaction(R-T PCR). RFRP3 positive cells were observed using Immunofluorescence confocal microscopy. At 25 and 30 days, the levels of sex hormones and the uterus coefficients were significantly higher in the precocious puberty model group than those in the normal and vehicle groups. The ovarian morphological development in the precocious puberty model rats was significantly earlier than those in the normal and vehicle groups. The mRNA expressions of RFRP3/GPR147 and GnRH in the precocious puberty model group gradually increased and peaked at 25 days. The different day-age and the interaction have significant statistical significance on the expression of RFRP3 mRNA, while the levels of RFRP3 mRNA in the model group and vehicle groups have no significant statistical significance. There was statistical significance between the model group and vehicle groups in different day-age on the expression of GPR147 mRNA.The expression of hypothalamic RFRP3/GPR147 mRNA and RFRP3 positive cells gradually decreased with puberty onset. At 35 days, the levels of RFRP3 mRNA and GPR147 mRNA were significantly lower in the precocious puberty model group than those in the vehicle groups. Meanwhile, the levels of LH in the precocious puberty model rats reached its peak at this age. In the vehicle group, the levels of RFRP3 mRNA and serum LH were gradually increased and LH nearly peaked at 35 day-age. Subsequently, it gradually decreased and reached the lowest level at 35 day-age. The expression of RFRP3 mRNA and LH were positively correlated. The findings suggested that RFRP3/GPR147 signaling pathway may be involved in the pathogenesis of sexual precocity by regulating puberty development and sexual maturity in rats.

UI MeSH Term Description Entries
D007028 Hypothalamic Hormones Peptide hormones produced by NEURONS of various regions in the HYPOTHALAMUS. They are released into the pituitary portal circulation to stimulate or inhibit PITUITARY GLAND functions. VASOPRESSIN and OXYTOCIN, though produced in the hypothalamus, are not included here for they are transported down the AXONS to the POSTERIOR LOBE OF PITUITARY before being released into the portal circulation. Hypothalamic Pituitary-Regulating Hormones,Hypothalamic Pituitary-Regulating Peptides,Hormones, Hypothalamic,Hormones, Hypothalamic Pituitary-Regulating,Hypothalamic Pituitary Regulating Hormones,Hypothalamic Pituitary Regulating Peptides,Peptides, Hypothalamic Pituitary-Regulating,Pituitary-Regulating Hormones, Hypothalamic,Pituitary-Regulating Peptides, Hypothalamic
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D011629 Puberty, Precocious Development of SEXUAL MATURATION in boys and girls at a chronological age that is 2.5 standard deviations below the mean age at onset of PUBERTY in the population. This early maturation of the hypothalamic-pituitary-gonadal axis results in sexual precocity, elevated serum levels of GONADOTROPINS and GONADAL STEROID HORMONES such as ESTRADIOL and TESTOSTERONE. Familial Precocious Puberty,Idiopathic Sexual Precocity,Precocious Puberty,Precocious Puberty, Central,Precocious Puberty, Male Limited,Precocious Puberty, Male-Limited,Pubertas Praecox,Sexual Precocity,Testotoxicosis,Central Precocious Puberties,Central Precocious Puberty,Familial Precocious Puberties,Idiopathic Sexual Precocities,Male-Limited Precocious Puberties,Male-Limited Precocious Puberty,Praecox, Pubertas,Precocious Puberties,Precocious Puberties, Central,Precocious Puberties, Familial,Precocious Puberties, Male-Limited,Precocious Puberty, Familial,Precocities, Idiopathic Sexual,Precocities, Sexual,Precocity, Idiopathic Sexual,Precocity, Sexual,Puberties, Central Precocious,Puberties, Familial Precocious,Puberties, Male-Limited Precocious,Puberties, Precocious,Puberty, Central Precocious,Puberty, Familial Precocious,Puberty, Male-Limited Precocious,Sexual Precocities,Sexual Precocities, Idiopathic,Sexual Precocity, Idiopathic
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018013 Receptors, Neuropeptide Cell surface receptors that bind specific neuropeptides with high affinity and trigger intracellular changes influencing the behavior of cells. Many neuropeptides are also hormones outside of the nervous system. Neuropeptide Receptors,Neuropeptide Receptor,Receptors, Neuropeptides,Neuropeptides Receptors,Receptor, Neuropeptide

Related Publications

Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
September 1969, Horumon to rinsho. Clinical endocrinology,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
January 1971, Gynecologie pratique,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
December 1962, The Journal of the Indiana State Medical Association,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
January 1956, Archivos medicos de Cuba,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
January 1969, Neuroendocrinology,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
December 2022, Journal of clinical research in pediatric endocrinology,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
August 2004, Neuroscience letters,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
December 1955, The Journal of clinical endocrinology and metabolism,
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
March 1994, Contraception, fertilite, sexualite (1992),
Wen Sun, and Suhuan Li, and Zhanzhuang Tian, and Yumin Shi, and Jian Yu, and Yanyan Sun, and Yonghong Wang
December 1992, Neuroendocrinology,
Copied contents to your clipboard!