Structure and biosynthesis of prokaryotic glycoproteins. 1988

F Wieland
Institut für Biochemie I, Heidelberg, F.R.G.

Glycoproteins as components of cell surfaces are not restricted to eukaryotes. The prokaryotic glycoprotein studied in greatest detail so far is the cell surface glycoprotein of the archaebacterium Halobacterium halobium. This bacterial glycoprotein contains 3 different types of glycoconjugates, and each type of glycoconjugate involves a different carbohydrate-protein linkage unit: 1) One glycosaminoglycan chain, constructed from a repeating sulfated pentasaccharide block, is linked to one protein molecule via the novel N-glycosyl linkage unit asparaginyl-N-acetylgalactosamine. 2) Ten sulfated oligosaccharides that contain glucose, glucuronic acid and iduronic acid are bound to the protein via the hitherto unknown N-glycosyl linkage unit asparaginylglucose. 3) About 15 disaccharides, glucosylgalactose, are O-glycosyl-linked to a cluster of threonine residues close to the C-terminus of the core protein. The overall structure of the cell surface glycoprotein of halobacteria is thus reminiscent of animal proteoglycans and a functional role of the glycosaminoglycan chain in maintaining the rod shape of halobacteria is discussed. Biosynthesis of the two N-glycosyl linkage units involves dolichol monophosphate and dolicholdiphosphate-linked saccharide precursors. Sulfation and epimerization of the glycoconjugates occur at the lipid-linked level and the mature saccharides are transferred to the protein core on the cell surface. The sulfated oligosaccharides that finally become bound to asparagine via glucose are transiently methylated at their lipid-linked stage and this transient chemical modification seems to be required for the biosynthesis of the corresponding N-glycosyl bond.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D051152 Clusterin A highly conserved heterodimeric glycoprotein that is differentially expressed during many severe physiological disturbance states such as CANCER; APOPTOSIS; and various NEUROLOGICAL DISORDERS. Clusterin is ubiquitously expressed and appears to function as a secreted MOLECULAR CHAPERONE. ApoJ Protein,Apolipoprotein J,Complement Lysis Inhibitor,Complement-Associated Protein SP-40,40,Ionizing Radiation-Induced Protein-8,MAC393 Antigen,SGP-2 Protein,SP 40,40 Protein,Sulfated Glycoprotein 2,Sulfated Glycoprotein-2,TRPM-2 Protein,Testosterone-Repressed Prostate Message-2 Protein,X-Ray-Inducible Protein 8,XIP8 Protein,Complement Associated Protein SP 40,40,Ionizing Radiation Induced Protein 8,Radiation-Induced Protein-8, Ionizing,SGP 2 Protein,SP-40,40, Complement-Associated Protein,TRPM 2 Protein,Testosterone Repressed Prostate Message 2 Protein,X Ray Inducible Protein 8
D018832 Molecular Chaperones A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures. Chaperones, Molecular,Chaperone, Molecular,Molecular Chaperone

Related Publications

F Wieland
December 1999, Biochimica et biophysica acta,
F Wieland
January 2003, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles,
F Wieland
January 1989, Postepy biochemii,
F Wieland
January 1969, Enzymologia biologica et clinica,
F Wieland
November 1991, The Journal of biological chemistry,
F Wieland
October 1990, Seikagaku. The Journal of Japanese Biochemical Society,
F Wieland
May 2004, Journal of bacteriology,
F Wieland
December 1967, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!