Formation of the tooth enamel rod pattern and the cytoskeletal organization in secretory ameloblasts of the rat incisor. 1988

S Nishikawa, and K Fujiwara, and H Kitamura
Department of Oral Histology, Kanagawa Dental College, Japan.

The localization of actin, myosin, tropomyosin, alpha-actinin, vinculin, and desmoplakin I/II was visualized by immunofluorescence microscopy. Antibodies against myosin, tropomyosin, and alpha-actinin and rhodamine-phalloidin labeled strongly the proximal and distal terminal webs which ultrastructurally consist of dense microfilament bundles. In the distal terminal web, the staining by these reagents occurred mostly perpendicular to the long axis of the incisor. Antivinculin stained the general area where the distal terminal web is located in the ameloblast. Anti-desmoplakin I/II labeled the junctional area associated with the proximal and distal terminal webs. The anti-desmoplakin staining was stronger along the cell border perpendicular to the long axis of the incisor. Comparison of the rhodamine-phalloidin staining pattern of the distal terminal web and the enamel secretion pattern by ameloblasts revealed that a change in the distal terminal web staining pattern preceded a change in the secretion pattern. These observations suggest that the cytoskeletal organization in the ameloblast is involved in the formation of the enamel matrix pattern in the rat incisor.

UI MeSH Term Description Entries
D007180 Incisor Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820) Incisors
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010590 Phalloidine Very toxic polypeptide isolated mainly from AMANITA phalloides (Agaricaceae) or death cup; causes fatal liver, kidney and CNS damage in mushroom poisoning; used in the study of liver damage. Phalloidin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices

Related Publications

S Nishikawa, and K Fujiwara, and H Kitamura
November 1988, Calcified tissue international,
S Nishikawa, and K Fujiwara, and H Kitamura
March 1979, Journal of dental research,
S Nishikawa, and K Fujiwara, and H Kitamura
October 1981, Journal of anatomy,
S Nishikawa, and K Fujiwara, and H Kitamura
January 1997, Ciba Foundation symposium,
S Nishikawa, and K Fujiwara, and H Kitamura
April 1979, Cell and tissue research,
S Nishikawa, and K Fujiwara, and H Kitamura
December 1956, Journal of the American Dental Association (1939),
S Nishikawa, and K Fujiwara, and H Kitamura
October 1946, Nature,
S Nishikawa, and K Fujiwara, and H Kitamura
June 1978, The American journal of anatomy,
S Nishikawa, and K Fujiwara, and H Kitamura
January 1968, Journal of ultrastructure research,
S Nishikawa, and K Fujiwara, and H Kitamura
December 1984, Journal of ultrastructure research,
Copied contents to your clipboard!