Optical probes of membrane potential in heart muscle. 1979

M Morad, and G Salama

1. The fluorescent dye Merocyanine-540 and the two weakly fluoresecnet dyes Merocyanine-rhodanine and Merocyanine-oxazolone are shown to respond as optical probes of membrane potential in heart muscle. 2. In frog hearts stained with Merocyanine-540, the absorption at 540 nm decreases by 0.1-1.0% and increase at 570 nm excitation wave-length, the fluorescence increases by 1-2%. The time course of all three optical measurements follows the kinetics of the action potential. 3. Merocyanine-rhodanine exhibits potential-dependent optical responses through a 0.5% decrease in absorption at 750 nm, and Merocyanine-oxazolone has a 1.0% decrease in absorption at 720 nm. Their optical responses have a signal-to-noise ratio of 100/1 and 500/1, respectively. 4. The action spectrum of Merocyanine-rhodanine is triphasic in frog heart with an increase in transmittance from 780 to 700, a decrease from 700 to 600, and increase from 600 to 450 nm. Merocyanine-oxazolone shows only increases in transmittance during membrane depolarization. 5. The optical responses of these probes are linear with respect to changes in membrane potential. 6. Pharmacological agents or ionic interventions do not alter the membrane potential sensitivity of Merocyanine-540. 7. Rapid spectrophotometric measurements at various phases of the action potential indicate that the potential dependent optical signals of Merocyanine-540 are produced by changes in amplitude of fluorescence and absorption bands. The lack of wave-length displacement as a function of membrane potential, i.e. electrochromism, is not the mechanism governing the voltage sensitivity of Merocyanine-540. 8. The data suggest that these Merocyanine dyes bind to the plasma membrane and serve as linear optical probes of membrane potential in heart muscle.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

M Morad, and G Salama
June 1976, The Journal of membrane biology,
M Morad, and G Salama
September 1978, Biochemistry,
M Morad, and G Salama
January 1979, Methods in enzymology,
M Morad, and G Salama
December 2020, Biotechnology journal,
M Morad, and G Salama
April 1979, European journal of biochemistry,
M Morad, and G Salama
January 1988, Society of General Physiologists series,
M Morad, and G Salama
December 1985, Biophysical journal,
M Morad, and G Salama
March 1981, FEBS letters,
M Morad, and G Salama
January 1978, Reviews of physiology, biochemistry and pharmacology,
M Morad, and G Salama
January 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!