Heat-shock proteins in membrane vesicles of Bacillus subtilis. 1988

A Fabisiewicz, and M Piechowska
Department of Molecular Biology, Polish Academy of Sciences, Warszawa.

Fractionation of B. subtilis cells after heat shock, from 37 degrees C to 54 degrees C, shows an increase in synthesis of proteins localized in cell membranes and a decrease in synthesis of proteins localized in cytosol. There is no such effect of heat shock at temperature of 45 degrees C. Autoradiograms of electrophoretically separated proteins, labelled during heat shock at 54 degrees C, reveal 26 heat-shock proteins (hsps) in membrane vesicles and 11 hsps in cytosol, five of which are common to both fractions. Heat shock at 45 degrees C induces 18 hsps localized in membrane vesicles and 13 hsps localized in cytosol, six of which are common to both fractions. Results are interpreted as showing a relevant role of membrane proteins in cell response to shock at high temperature, pointing to two steps of defense against heat stress.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D012967 Sodium Dodecyl Sulfate An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry. Sodium Lauryl Sulfate,Irium,Dodecyl Sulfate, Sodium,Lauryl Sulfate, Sodium,Sulfate, Sodium Dodecyl,Sulfate, Sodium Lauryl
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

A Fabisiewicz, and M Piechowska
April 1975, Archives of biochemistry and biophysics,
A Fabisiewicz, and M Piechowska
September 1985, FEBS letters,
A Fabisiewicz, and M Piechowska
January 2001, Journal of bacteriology,
A Fabisiewicz, and M Piechowska
December 1986, Journal of bacteriology,
A Fabisiewicz, and M Piechowska
January 2003, Cell stress & chaperones,
A Fabisiewicz, and M Piechowska
December 1985, Journal of bacteriology,
A Fabisiewicz, and M Piechowska
January 1984, Zeitschrift fur allgemeine Mikrobiologie,
A Fabisiewicz, and M Piechowska
April 1995, Current microbiology,
A Fabisiewicz, and M Piechowska
April 1972, The Journal of biological chemistry,
A Fabisiewicz, and M Piechowska
October 1992, Journal of general microbiology,
Copied contents to your clipboard!