Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. 2019

William Heffley, and Court Hull
Department of Neurobiology, Duke University School of Medicine, Durham, United States.

Classical models of cerebellar learning posit that climbing fibers operate according to a supervised learning rule to instruct changes in motor output by signaling the occurrence of movement errors. However, cerebellar output is also associated with non-motor behaviors, and recently with modulating reward association pathways in the VTA. To test how the cerebellum processes reward related signals in the same type of classical conditioning behavior typically studied to evaluate reward processing in the VTA and striatum, we have used calcium imaging to visualize instructional signals carried by climbing fibers across the lateral cerebellum in mice before and after learning. We find distinct climbing fiber responses in three lateral cerebellar regions that can each signal reward prediction. These instructional signals are well suited to guide cerebellar learning based on reward expectation and enable a cerebellar contribution to reward driven behaviors, suggesting a broad role for the lateral cerebellum in reward-based learning.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012201 Reward An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure. Rewards
D017557 Ventral Tegmental Area A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA. Area Tegmentalis Ventralis,Ventral Tegmental Area of Tsai,Area Tegmentalis Ventrali,Tegmental Area, Ventral,Tegmentalis Ventrali, Area,Tegmentalis Ventralis, Area
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

William Heffley, and Court Hull
April 2007, Journal of neurophysiology,
William Heffley, and Court Hull
March 2007, Genes, brain, and behavior,
William Heffley, and Court Hull
September 1977, The Journal of comparative neurology,
William Heffley, and Court Hull
September 2023, Communications biology,
William Heffley, and Court Hull
October 2019, eLife,
William Heffley, and Court Hull
September 2022, Neurobiology of learning and memory,
William Heffley, and Court Hull
January 1991, Annals of the New York Academy of Sciences,
William Heffley, and Court Hull
January 1971, Developmental psychobiology,
William Heffley, and Court Hull
July 1983, Brain research,
William Heffley, and Court Hull
August 2004, Behavioural brain research,
Copied contents to your clipboard!