Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid. 1988

H Kijima, and N Tanabe
Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.

1. Application of an amino-residue-modifying reagent, 2,4,6-trinitrobenzene-1-sulphonic acid (TNBS), to the frog neuromuscular junction in high-magnesium Ringer solution rapidly increased both the amplitude of nerve-evoked end-plate potentials (EPPs) and the frequency of miniature end-plate potentials (MEPPs). These showed a similar initial time course and reached a maximum 3-7 min and about 10 min, respectively, after the start of application of 2 mM-TNBS. Then, the EPP amplitude decreased, while the MEPP frequency maintained its plateau value. The increase in transmitter release and the decrease in EPP amplitude by TNBS may have been due to different modes of action. 2. The distribution of MEPP amplitude was unchanged by TNBS treatment. 3. The carbachol-induced postsynaptic potential and the extracellularly recorded presynaptic action current were not affected by TNBS treatment for up to 30 min, indicating that the change in EPP amplitude produced by TNBS was not due to either a postsynaptic effect or a change in action potential at the presynaptic terminal. 4. The frequency of MEPPs was increased by TNBS application even when Ca2+ was omitted from the external Ringer solution or when a specific calcium channel blocker, synthetic omega-conotoxin, was added. This indicates that Ca2+ inflow to the nerve terminal is not necessary for TNBS action. 5. When a calcium chelator, BAPTA, was loaded into the presynaptic nerve terminal, the facilitation of EPPs by trains of nerve stimuli was scarcely observed. This suggested that the cytosolic free Ca2+ in the presynaptic terminal was buffered by BAPTA. Under this condition, the amplitudes of EPPs were increased by TNBS application to the same extent as in the control without BAPTA, but were accompanied by little facilitation. The MEPP frequency was also increased by TNBS to the same extent as in the control. These results suggest strongly that augmentation of transmitter release by TNBS was not due to an increase in cytosolic Ca2+ concentration. 6. These observations suggest that TNBS might react with specific protein(s) on the outer surface of the presynaptic membrane and accelerate the exocytosis of synaptic vesicles.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009578 Nitrobenzenes BENZENE derivatives carrying nitro group substituents.
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

H Kijima, and N Tanabe
June 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!