Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. 2019

Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal.

In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.

UI MeSH Term Description Entries
D005718 Gametogenesis The process of germ cell development from the primordial GERM CELLS to the mature haploid GAMETES: ova in the female (OOGENESIS) or sperm in the male (SPERMATOGENESIS). Gametogeneses
D006238 Haploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N. Haploid,Haploid Cell,Cell, Haploid,Cells, Haploid,Haploid Cells,Haploidies,Haploids
D000073893 Sugars Short chain carbohydrate molecules that have hydroxyl groups attached to each carbon atom unit with the exception of one carbon that has a doubly-bond aldehyde or ketone oxygen. Cyclical sugar molecules are formed when the aldehyde or ketone groups respectively form a hemiacetal or hemiketal bond with one of the hydroxyl carbons. The three dimensional structure of the sugar molecule occurs in a vast array of biological and synthetic classes of specialized compounds including AMINO SUGARS; CARBASUGARS; DEOXY SUGARS; SUGAR ACIDS; SUGAR ALCOHOLS; and SUGAR PHOSPHATES. Sugar
D000459 Phaeophyceae A class of predominantly marine EUKARYOTA, commonly known as brown algae, having CHROMATOPHORES containing carotenoid PIGMENTS, BIOLOGICAL. ALGINATES and phlorotannins occur widely in all major orders. They are considered the most highly evolved algae because of their well-developed multicellular organization and structural complexity. Algae, Brown,Phaeophyta,Brown Algae
D058977 Molecular Sequence Annotation The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record. Gene Annotation,Protein Annotation,Annotation, Gene,Annotation, Molecular Sequence,Annotation, Protein,Annotations, Gene,Annotations, Molecular Sequence,Annotations, Protein,Gene Annotations,Molecular Sequence Annotations,Protein Annotations,Sequence Annotation, Molecular,Sequence Annotations, Molecular
D059014 High-Throughput Nucleotide Sequencing Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc. High-Throughput Sequencing,Illumina Sequencing,Ion Proton Sequencing,Ion Torrent Sequencing,Next-Generation Sequencing,Deep Sequencing,High-Throughput DNA Sequencing,High-Throughput RNA Sequencing,Massively-Parallel Sequencing,Pyrosequencing,DNA Sequencing, High-Throughput,High Throughput DNA Sequencing,High Throughput Nucleotide Sequencing,High Throughput RNA Sequencing,High Throughput Sequencing,Massively Parallel Sequencing,Next Generation Sequencing,Nucleotide Sequencing, High-Throughput,RNA Sequencing, High-Throughput,Sequencing, Deep,Sequencing, High-Throughput,Sequencing, High-Throughput DNA,Sequencing, High-Throughput Nucleotide,Sequencing, High-Throughput RNA,Sequencing, Illumina,Sequencing, Ion Proton,Sequencing, Ion Torrent,Sequencing, Massively-Parallel,Sequencing, Next-Generation
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
January 2022, Journal of applied phycology,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
December 2023, Annals of botany,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
August 2022, Marine biotechnology (New York, N.Y.),
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
December 2022, Foods (Basel, Switzerland),
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
December 2020, Genes,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
March 2022, G3 (Bethesda, Md.),
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
November 2018, Marine environmental research,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
October 2023, Scientific reports,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
January 2018, Phycologia,
Gareth A Pearson, and Neusa Martins, and Pedro Madeira, and Ester A Serrão, and Inka Bartsch
October 2012, Archives of environmental contamination and toxicology,
Copied contents to your clipboard!