[Different effect of testosterone on polypotential stem hematopoietic stem cells and immunocompetent B-lymphocytes]. 1979

V A Kozlov, and I G Tsyrlova, and I N Zhuravkin

A research was made to study the dynamics of the proliferative, colony-forming and migration capacity of stem hemopoietic cells in (CBA X C57Bl) F1 hybrid mice under the influence of testosterone propionate, 10 mg/100 g, as well as the migration of immunocompetent B lymphocytes from the bone marrow to the spleen and the accumlation of their progeny, antibody-producing cells, in the spleen. The immunodepressive effect of testosterone was manifested by a decrease in the migration of B cells and the number of antibody-producing cells in the spleen. On the contrary, testosterone had a stimulating effect on the functional activity of stem hemopoietic cells, increasing their proliferation and migration. Under conditions of the suppressed erythropoietic differentiation of multipotent stem hemopoietic cells the injection of testosterone resulted in an increase in the number of antibody-producing cells in the spleen. This suggests that the stimulation of erythropoiesis and immunosuppression, induced by testosterone, are interconnected and determined by the direct action of the hormone on the cellular cycle of the stem cells, as well as by their prevailing differentiation towards the erythroid series, resulting in the decrease of their differentiation into B cells.

UI MeSH Term Description Entries
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
January 1987, Doklady Akademii nauk SSSR,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
January 2004, Methods in molecular biology (Clifton, N.J.),
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
October 1973, Problemy gematologii i perelivaniia krovi,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
November 1977, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
January 1976, Ontogenez,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
June 1972, Doklady Akademii nauk SSSR,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
June 2017, Stem cell reports,
V A Kozlov, and I G Tsyrlova, and I N Zhuravkin
January 1974, Journal of the National Cancer Institute,
Copied contents to your clipboard!