Design, Synthesis, and Anti-Bacterial Evaluation of Triazolyl-Pterostilbene Derivatives. 2019

Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan. dadaking1107@gmail.com.

Staphylococcus aureus resistance to current antibiotics has become the greatest global challenge facing public health. The development of new antimicrobial agents is urgent and important and is needed to provide additional therapeutic options. In our previous study, we found out that pterostilbene exhibited potent antibacterial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). According to previous studies, 1,2,3-triazole, with the characteristic of increasing the interaction with the target readily and enhancing water solubility, were widely used in the approved anti-bacterial drugs. Therefore, these results attract our interest to use the structure of pterostilbene as a scaffold for the hybrid 1,2,3-triazole moiety to develop a novel anti-MRSA infection agent. In this study, we demonstrated the design and synthesis of a series of triazolylpterostilbene derivatives. Among these compounds, compound 4d exhibited the most potent anti-MRSA activity with a minimum inhibitory concentration (MIC) value of 1.2-2.4 μg/mL and a minimum bactericidal concentration (MBC) value of 19.5-39 μg/mL. The structure-activity relationship and antibacterial mechanism were investigated in this study. Molecular docking studies were carried out to verify and rationalize the biological results. In this study, the results confirmed that our design could successfully increase the inhibitory activity and specificity against MRSA. Compound 4d could be used as a candidate for anti-bacterial agents and in depth vivo studies should be further investigated.

UI MeSH Term Description Entries
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014230 Triazoles Heterocyclic compounds containing a five-membered ring with two carbon atoms and three nitrogen atoms with the molecular formula C2H3N3. Triazole
D055624 Methicillin-Resistant Staphylococcus aureus A strain of Staphylococcus aureus that is non-susceptible to the action of METHICILLIN. The mechanism of resistance usually involves modification of normal or the presence of acquired PENICILLIN BINDING PROTEINS. MRSA,Methicillin Resistant Staphylococcus aureus
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking

Related Publications

Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
March 2015, European journal of medicinal chemistry,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
December 2024, Journal of enzyme inhibition and medicinal chemistry,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
August 2013, European journal of medicinal chemistry,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
May 2018, European journal of medicinal chemistry,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
July 2018, Chemical biology & drug design,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
November 2022, Molecules (Basel, Switzerland),
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
October 2020, Bioorganic & medicinal chemistry,
Kai-Wei Tang, and Shih-Chun Yang, and Chih-Hua Tseng
July 2002, Farmaco (Societa chimica italiana : 1989),
Copied contents to your clipboard!