Neural organization of the retina of the turtle Mauremys caspica: a light microscope and Golgi study. 1988

H Kolb, and I Perlman, and R A Normann
Physiology Department, University of Utah School of Medicine, Salt Lake City.

The organization of the retina of the turtle species Mauremys caspica, found in fresh water ponds of Israel, has been examined by light microscopical techniques including examination of fresh wholemount retina, one micron blue-stained vertical sections and Golgi-stained material. The anatomical findings on Mauremys retina have been compared with those of the Pseudemys retina (Kolb, 1982) which is more commonly used for electrophysiological and neurochemical studies in the USA. The photoreceptors of Mauremys are similar in type and oil droplet content to Pseudemys photoreceptors except for the double cone in Mauremys. This cone type appears more abundant than in Pseudemys and the principal member contains a yellow oil droplet instead of an orange oil droplet. Golgi staining reveals that the cell types that have been seen in Pseudemys are found in Mauremys with identical morphology. In addition, two amacrine cell types that were not before described for Pseudemys have been added to the classification. One of these is the tristratified dopaminergic amacrine cell described in immunocytochemical studies (Witkovsky et al., 1984; Nguyen-Legros et al., 1985; Kolb et al., 1987). We have used these anatomical studies on Pseudemys and Mauremys retina to form a catalogue of neural types for the turtle retina in general. We conclude with an attempt to combine findings from anatomy, electrophysiology, and neurochemistry to form an overview of the organization of this reptilian retina.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

H Kolb, and I Perlman, and R A Normann
January 1998, Visual neuroscience,
H Kolb, and I Perlman, and R A Normann
January 1994, Visual neuroscience,
H Kolb, and I Perlman, and R A Normann
January 1985, Developmental and comparative immunology,
H Kolb, and I Perlman, and R A Normann
January 2002, Visual neuroscience,
H Kolb, and I Perlman, and R A Normann
January 1981, Cell and tissue research,
H Kolb, and I Perlman, and R A Normann
April 2001, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
H Kolb, and I Perlman, and R A Normann
October 1984, The Anatomical record,
H Kolb, and I Perlman, and R A Normann
March 2016, Journal of parasitic diseases : official organ of the Indian Society for Parasitology,
Copied contents to your clipboard!