The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. 1985

C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert

Hypothyroidism was induced in Wistar-Kyoto rats by adding propylthiouracil to the drinking water (0.8 mg/ml). Initial heat, total activity-related heat, and resting heat rate were measured in left ventricular papillary muscle preparations of propylthiouracil-treated and control rats contracting isometrically at 12 beats/min (21 degrees C), using Hill type, planar vacuum-deposited bismuth and antimony thermopiles. In the propylthiouracil preparations, relative to control, time-to-peak tension increased from 288 +/- 27 (mean +/- SD) to 411 +/- 25 msec (P less than 0.001), dp/dtmax decreased from 38.3 +/- 9.5 to 20.4 +/- 3.5 g X mm-2/sec (P less than 0.001), and peak developed tension decreased from 6.11 +/- 1.75 to 4.64 +/- 0.89 g X mm-2 (P less than 0.05). In the propylthiouracil preparations, initial heat was significantly (P less than 0.001) reduced by 27 or 43% when normalized to peak twitch tension or tension-time integral, respectively. In experiments where the papillary muscles were tetanized, the slope of the linear function of total activity-related heat versus tension-time integral was decreased by 43% (P less than 0.001) in the propylthiouracil preparations, indicating an improved economy of isometric tension maintenance. The predominant myosin isoenzyme of the left ventricular wall, as well as the papillary muscle myocardium, was the V3 variety in the propylthiouracil animals, in contrast to V1 in the controls. Myofibrillar actomyosin calcium-magnesium-stimulated adenosine triphosphatase activity was significantly (P less than 0.02) decreased from 55 +/- 18 (control) to 31 +/- 8 nmol inorganic phosphate ion/mg X min (propylthiouracil).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats

Related Publications

C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
August 1989, Circulation research,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
January 1987, Basic research in cardiology,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
September 2008, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
May 1985, The American journal of physiology,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
March 1984, Molecular and cellular endocrinology,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
January 2001, Folia histochemica et cytobiologica,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
December 1994, The Journal of physiology,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
December 1984, European heart journal,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
May 1984, Endocrinology,
C Holubarsch, and R P Goulette, and R Z Litten, and B J Martin, and L A Mulieri, and N R Alpert
January 1980, Basic research in cardiology,
Copied contents to your clipboard!