Electrophysiological actions of corticotropin-releasing factor in the central nervous system. 1985

G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman

A review of recent studies of the effects of corticotropin-releasing factor (CRF) on the electrical activity of central neurons indicates that CRF has predominantly excitatory actions in locus ceruleus, hippocampus, cortex, and some regions of hypothalamus. These brain areas are reported to contain immunoreactive CRF. Intracellular recordings in the hippocampal slice preparation demonstrate that the excitation in this preparation may arise from reduction of the afterhyperpolarizations (AHPs) following bursts of spikes. The postburst AHPs probably are produced by a Ca2+-dependent K+ conductance. Inasmuch as "Ca2+ spikes" recorded in the presence of tetrodotoxin are not diminished by CRF, this peptide appears to be acting either at the level of the Ca2+-dependent K+ conductance itself, or at the linkage between this conductance and Ca2+ influx or Ca2+ recognition sites. These excitatory effects are consistent with electroencephalographic recordings in awake animals, where intracerebroventricular CRF activates cortical and limbic areas and, at higher doses, evokes epileptiform activity in amygdala and hippocampus. However, predominantly inhibitory actions of CRF have been seen with extracellular single-unit recordings in a few central nervous system (CNS) areas such as lateral septum, thalamus, and the hypothalamic paraventricular nucleus. These findings, combined with those from immunohistochemical, biochemical, and behavioral studies, suggest 1) a possible neuromessenger role for CRF in extrahypothalamic regions and 2) a possible concerted function by CRF-containing elements in the CNS in an integrated behavioral response to stress.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
May 1989, Brain research,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
December 1986, Brain research,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
September 1982, Endocrinology,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
November 1983, Brain research,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
January 1989, Regulatory peptides,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
January 1993, Ciba Foundation symposium,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
January 1999, Results and problems in cell differentiation,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
January 1986, Neuroendocrinology,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
September 1999, Current opinion in drug discovery & development,
G R Siggins, and D Gruol, and J Aldenhoff, and Q Pittman
July 1991, Neuroendocrinology,
Copied contents to your clipboard!