beta-Endorphin stimulates plasma renin and aldosterone release in normal human subjects. 1985

S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams

To determine the effect of beta-endorphin on the renin-angiotensin-aldosterone system, human synthetic beta-endorphin (0.3, 1.0, and 3.0 micrograms/kg X min) was infused iv in normal subjects. Each dose was administered for 30 min, and a control infusion of 5% dextrose and water was given on another day. Ten subjects were studied recumbent and in balance while ingesting a 10-meq Na+ diet. Plasma renin activity (PRA), plasma aldosterone (PA), and plasma cortisol (F) were measured basally and every 30 min for 210 min. The increments in PRA and PA above basal significantly (P less than 0.05) increased (3.1 +/- 1.2 ng/ml X h and 12.2 +/- 5.3 ng/dl, respectively; P less than 0.05) at the end of the beta-endorphin infusion. beta-Endorphin also significantly (P less than 0.01) suppressed F levels. Since in the low salt study, beta-endorphin suppressed F release while stimulating renin secretion, an additional five subjects were pretreated with dexamethasone (0.5 mg every 6 h) and were studied in balance while ingesting a 200-meq Na+ diet to suppress the renin-angiotensin system. Significant (P less than 0.025) increments in PRA (2.1 +/- 0.7 ng/ml X h) and PA (4.1 +/- 1.7 ng/dl) levels above basal were again found during the sequential dose infusion of beta-endorphin (0.3, 1.0, and 3.0 micrograms/kg X min). However, PA elevations were sustained for at least 120 min after the beta-endorphin infusion was stopped despite a drop in PRA 90 min earlier. In additional studies, an attempt was made to define the minimal effective dose of beta-endorphin by 60-min infusions (0.03, 0.1, and 0.3 micrograms/kg X min) in subjects on a 200-meq Na+ diet who were dexamethasone pretreated. The PRA and PA levels rose significantly (P less than 0.05) above basal at the 0.3 micrograms/kg X min dose, but not at the 0.03 or 0.1 micrograms/kg X min dosage levels. There were no changes in blood pressure or potassium during either the 10 or 200-meq Na+ studies. Thus, beta-endorphin stimulates aldosterone release in vivo. However, the underlying mechanisms are complex, since renin levels also increased. The data suggest that the early aldosterone rise may be secondary to an increase in renin release, but renin cannot account for the sustained postinfusion elevations of aldosterone.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004039 Diet, Sodium-Restricted A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed) Diet, Low-Salt,Diet, Low-Sodium,Diet, Salt-Free,Diet, Low Salt,Diet, Low Sodium,Diet, Salt Free,Diet, Sodium Restricted,Diets, Low-Salt,Diets, Low-Sodium,Diets, Salt-Free,Diets, Sodium-Restricted,Low-Salt Diet,Low-Salt Diets,Low-Sodium Diet,Low-Sodium Diets,Salt-Free Diet,Salt-Free Diets,Sodium-Restricted Diet,Sodium-Restricted Diets
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol

Related Publications

S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
March 1985, The Journal of clinical endocrinology and metabolism,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
April 1984, Neuroendocrinology,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
October 1978, Science (New York, N.Y.),
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
October 1994, Journal of applied physiology (Bethesda, Md. : 1985),
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
January 1983, The Journal of clinical investigation,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
December 1978, The Journal of clinical investigation,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
September 1983, The Journal of clinical endocrinology and metabolism,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
February 2006, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
S L Rabinowe, and T Taylor, and R G Dluhy, and G H Williams
January 1980, Neuropharmacology,
Copied contents to your clipboard!