Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. 1985

M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe

Abnormalities in glomerular function have been observed frequently in the early stages of both clinical and experimental diabetes mellitus. Because prostaglandins (PGs) are present in the glomerulus and have profound effects on glomerular hemodynamics, and because abnormalities of PG metabolism have been noted in other tissues from diabetics, we studied PG biosynthesis in glomeruli obtained from rats in the early stages of experimental diabetes mellitus. Streptozotocin, 60 mg/kg, was administered intravenously to male Sprague-Dawley rats. Control rats received an equal volume of the vehicle. Glomeruli were isolated 9-23 d later. Production of eicosanoids was determined by two methods: by direct radioimmunoassay after incubation of glomeruli under basal conditions and in the presence of arachidonic acid (C20:4), 30 microM, and by radiometric high-performance liquid chromatography (HPLC) after incubation of glomeruli with [14C]C20:4. When assessed by radioimmunoassay, mean basal production of both prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) was twofold greater in the diabetic animals whereas production of thromboxane B2 (TXB2) was not significantly greater than control. In response to C20:4, both PGE2 and PGF2 alpha were also greater in the diabetic animals, but these differences were not statistically significant. The increased rate of basal PG production did not appear to be related directly to the severity of the diabetic state as reflected by the degree of hyperglycemia at the time of sacrifice. In fact, the rates of glomerular PG production in the individual diabetic animals correlated inversely with the plasma glucose concentration. The increased rate of PG synthesis did not appear to be due to a nonspecific effect of streptozotocin inasmuch as glomerular PG production was not increased significantly in streptozotocin-treated rats which were made euglycemic by insulin therapy. Furthermore, addition of streptozotocin, 1-10 mM, to the incubation media had no effect on PGE2 production by normal glomeruli. PGE2 production by normal glomeruli was also not influenced by varying the glucose concentration in the incubation media over a range of 1-40 mM. When metabolism of [14C]C20:4 was evaluated by high-performance liquid chromatography conversion to labeled PGE2, PGF2 alpha, TXB2, and hydroxyheptadecatrienoic acid by diabetic glomeruli was two- to threefold greater compared with that in control glomeruli, whereas no significant difference in conversion to 12- and 15-hydroxyeicosatetraenoic acid occurred. These findings indicate that glomerular cyclooxygenase but not lipoxygenase activity was increased in the diabetic animals. A concomitant increase in glomerular phospholipase activity may also have been present to account for the more pronounced differences in PG production noted in the absence of exogenous unlabeled C20:4. These abnormalities in PG biosynthesis by diabetic glomeruli may contribute to the altered glomerular hemodynamics in this pathophysiologic setting.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008297 Male Males
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013311 Streptozocin An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. Streptozotocin,2-Deoxy-2-((methylnitrosoamino)carbonyl)amino-D-glucose,Streptozotocine,Zanosar
D013929 Thromboxane B2 A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). B2, Thromboxane

Related Publications

M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
September 1981, Circulation research,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
November 1982, Thrombosis research,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
March 1981, The American journal of physiology,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
April 1982, British medical journal (Clinical research ed.),
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
January 1987, The Japanese journal of physiology,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
June 1988, Nihon Jinzo Gakkai shi,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
April 1991, Endocrinology,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
April 2005, Biopharmaceutics & drug disposition,
M Schambelan, and S Blake, and J Sraer, and M Bens, and M P Nivez, and F Wahbe
April 1982, European journal of biochemistry,
Copied contents to your clipboard!