Renal mechanism of action of rat atrial natriuretic factor. 1985

C L Huang, and J Lewicki, and L K Johnson, and M G Cogan

There has been conflict as to whether crude extracts of atrial natriuretic factor increase renal solute excretion by a hemodynamic mechanism or by direct inhibition of tubular transport. To investigate this issue, seven rats were studied during a euvolemic control period and following continuous administration of pure, synthetic 24 amino acid atrial natriuretic factor. A 10-25-fold increase in urinary sodium and chloride excretion occurred with a brisk kaliuresis but little bicarbonaturia. Atrial natriuretic factor caused whole kidney glomerular filtration rate to increase from 1.17 +/- 0.04 to 1.52 +/- 0.07 ml/min (P less than 0.005). A parallel increase in single nephron glomerular filtration rate, from 34 +/- 1 to 44 +/- 2 nl/min (P less than 0.001), and from 26 +/- 1 to 37 +/- 2 nl/min (P less than 0.005) was measured at the end-proximal and early distal nephron sites, respectively. Appropriate for the higher flows were an increase in absolute proximal and loop reabsorptive rates for bicarbonate, chloride, and water, with a slight decrease in fractional solute and volume reabsorption in proximal and loop segments. To exclude the possibility that atrial natriuretic factor increased filtration rate only in anesthetized animals, eight unanesthetized rats were studied. Glomerular filtration rate increased by 45%, from 2.04 +/- 0.17 to 2.97 +/- 0.27 ml/min (P less than 0.005) without significant change in renal plasma flow, as reflected by 14C-para-aminohippurate clearance (5.4 +/- 0.5-5.6 +/- 0.9 ml/min). The clearance and micropuncture data did not preclude changes in relative blood flow distribution to or in transport by deep nephron segments. In conclusion, atrial natriuretic factor appears to increase renal solute excretion predominantly by a hemodynamic mechanism without directly inhibiting superficial tubular transport.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009318 Natriuresis Sodium excretion by URINATION. Natriureses
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D005260 Female Females
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration

Related Publications

C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
January 1985, Transactions of the Association of American Physicians,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
January 1990, Acta physiologica Scandinavica. Supplementum,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
November 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
June 1998, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
June 1986, Federation proceedings,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
January 1986, Neuroendocrinology,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
January 1990, Annual review of physiology,
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
January 1989, Clinical science (London, England : 1979),
C L Huang, and J Lewicki, and L K Johnson, and M G Cogan
March 1995, The American journal of physiology,
Copied contents to your clipboard!